“秒杀”系统的建设需要整个系统从前到后全栈的协同配合,其中包含了基础技术部维护的多个服务,比如CDN、高防IP、容器平台、缓存、数据库、中间件、全链路压测、监控系统等,我们围绕这些基础服务讨论秒杀系统的技术挑战与架构优化。
谈到大数据,相信大家对Hadoop和Apache Spark这两个名字并不陌生。但我们往往对它们的理解只是提留在字面上,并没有对它们进行深入的思考,下面不妨跟我一块看下它们究竟有什么异同。
谈到大数据,相信大家对 Hadoop 和 Apache Spark 这两个名字并不陌生。但我们往往对它们的理解只是提留在字面上,并没有对它们进行深入的思考,下面不妨一起看下它们究竟有什么异同。 1 解决问题的层面不一样 首先,Hadoop 和 Apache Spark 两者都是大数据框架,但是各自存在的目的不尽相同。Hadoop 实质上更多是一个分布式数据基础设施: 它将巨大的数据集分派到一个由普通计算机组成的集群中的多个节点进行存储,意味着您不需要购买和维护昂贵的服务器硬件。 同时,Hadoop 还会索引
谈到大数据,相信大家对 Hadoop 和 Apache Spark 这两个名字并不陌生。但我们往往对它们的理解只是停留在字面上,并没有对它们进行深入的思考,下面不妨跟我一块看下它们究竟有什么异同。
谈到大数据,相信大家对 Hadoop 和 Apache Spark 这两个名字并不陌生。但我们往往对它们的理解只是提留在字面上,并没有对它们进行深入的思考,下面不妨一起看下它们究竟有什么异同。
谈到大数据,相信大家对Hadoop和Apache Spark这两个名字并不陌生。但我们往往对它们的理解只是停留在字面上,并没有对它们进行深入的思考,下面不妨跟我一块看下它们究竟有什么异同。
在企业数字化转型的当下,数据仓库的云端构建成为主流趋势,Gartner 预测,到2023年全球3/4的数据库都会跑在云上。
对Hadoop与Spark孰优孰劣这个问题,最准确的观点就是,设计人员旨在让Hadoop和Spark在同一个团队里面协同运行。 直接比较Hadoop和Spark有难度,因为它们处理的许多任务都一样,但是在一些方面又并不相互重叠。 比如说,Spark没有文件管理功能,因而必须依赖Hadoop分布式文件系统(HDFS)或另外某种解决方案。将Hadoop MapReduce与Spark作一番比较来得更明智,因为它们作为数据处理引擎更具有可比性。 过去几年,随着数据科学趋于成熟,也日益需要用一种不同的方法来处理
说到大数据,就不得不说Hadoop和 Spark,Hadoop和 Spark作为大数据当前使用最广泛的两种框架,是如何发展的,今天我们就追根溯源,和大家一起了解一下Hadoop和 Spark的过去和未来;在Hadoop出现之前,人们采用的是典型的高性能 HPC workflow,它有专门负责计算的compute cluster,cluster memory很小,所以计算产生的任何数据会存储在storage中,最后在Tape里进行备份,这种workflow主要适用高速大规模复杂计算,像核物理模拟中会用到。
云原生有一个简单的理解:云指的就是云服务器,原生指的就是云服务器中自带的应用软件。这些应用软件可以高效弹性扩缩容(指的就是增加或减少服务器的数量)后,自动适配新的服务器数量环境,而不需要运维或开发做什么。
众所周知,腾讯云一直被大家称为良心云,而隔壁的套路云也已在举行双11的活动,但套路太多,反观腾讯云要良心很多,也更直接,跟着我一起来看看吧。
作者颜卫,腾讯高级后台开发工程师,专注于Kubernetes大规模集群管理和资源调度,有过万级集群的管理运维经验。目前负责腾讯云TKE大规模Kubernetes集群的大数据应用托管服务。 大数据的发展历史 大数据技术起源于Google在2004年前后发表的三篇论文,分布式文件系统GFS、分布式计算框架MapReduce和NoSQL数据库系统BigTable,俗称"三驾马车"。在论文发表后,Lucene开源项目的创始人Doug Cutting根据论文原理初步实现了类似GFS和MapReduce的功能。并在20
某客户在中秋及国庆期间进行推广活动,业务访问量是平常的几倍,由于访问量的突增,无法及时进行扩容来规避,虽客户内部已提前进行容量评估和预留, 也采用自建的自动化扩容机制,其时效性在突发情况下未能达到预期,导致本次双节活动产生不小的业务损失。
在今天双 11 这个万众狂欢的节日,对于阿里员工来说,每个环节都将面临前所未有的考验,特别是技术环节,今天我们就一起来探讨下双11天量交易额背后的技术。
Elastic MapReduce(EMR)是腾讯云提供的云上 Hadoop 托管服务,提供了便捷的 Hadoop 集群部署、软件安装、配置修改、监控告警、弹性伸缩等功能,EMR部署在腾讯云平台(CVM)上,配合消息中间件、CDB等产品为企业提供了一套较为完善的大数据处理方案。如下图所示为EMR系统架构图:
在2023年11月12日,刚经过双11的购物节大压力的阿里,却从17:44起发生了服务宕机,旗下的淘宝、闲鱼、饿了么等服务出现服务中断,甚至让高校学生宿舍的洗衣机都“宕机”了。从阿里云健康看板公布的数据可以看出,阿里云的几乎所有的云产品等服务都受到了影响,影响了全球范围内多个地域。阿里云这次故障,放在整个云厂商界都是炸裂般的存在。阿里云历时3个多小时,服务才陆续恢复。
亚马逊Web服务的弹性MapReduce是一项基于Hadoop的实施,它可允许你运行大型的预处理工作,如格式转换和数据聚合等。虽然我们可以选择很多的编程语言来对这些任务进行编码,但是时间紧张的开发人员更需要一个能够最大限度减少编码开销的编程框架。Mrjob、 Dumbo 以及 PyDoop 是三个基于Python可满足以上需求的弹性MapReduce框架。 那么,为什么诸如Java或Apache Pig之类的流行编程语言无法胜任这项任务呢?亚马逊的弹性MapReduce(EMR)任务一般都是采用Java语言
自建开源大数据平台会随着企业数据的增长遇到:性能慢、扩容周期长、平台稳定性差、运维难、投入成本高等问题。在这里我们将从 EMR 的简介、EMR与自建Hadoop对比优势、自建迁移上云的实践案例来介绍 EMR 是如何解决这些问题的。
Apache Hadoop是一种开源软件框架,能够对分布式集群上的大数据集进行高吞吐量处理。Apache模块包括Hadoop Common,这是一组常见的实用工具,可以通过模块来运行。这些模块还包括:Hadoop分布式文件系统(HDFS)、用于任务调度和集群资源管理的 Hadoop YARN以及Hadoop MapReduce,后者是一种基于YARN的系统,能够并行处理庞大的数据集。 Apache还提供了另外的开源软件,可以在Hadoop上运行,比如分析引擎Spark(它也能独立运行)和编程语言Pig。 Hadoop 之所以广受欢迎,就是因为它为使用大众化硬件处理大数据提供了一种几乎没有限制的环境。添加节点是个简单的过程,对这个框架没有任何负面影响。 Hadoop具有高扩展性,能够从单单一台服务器灵活扩展到成千上万台服务器,每个集群运行自己的计算和存储资源。Hadoop在应用程序层面提供了高可用性,所以集群硬件可以是现成的。 实际的使用场合包括:在线旅游(Hadoop声称它是80%的网上旅游预订业务的可靠的大数据平台)、批量分析、社交媒体应用程序提供和分析、供应链优化、移动数据管理、医疗保健及更多场合。 它有什么缺点吗? Hadoop很复杂,需要大量的员工时间和扎实的专业知识,这就阻碍了它在缺少专业IT人员的公司企业的采用速度。由于需要专家级管理员,加上广泛分布的集群方面需要庞大的成本支出,从中获得商业价值也可能是个挑战。I 集群管理也可能颇为棘手。虽然Hadoop统一了分布式计算,但是配备和管理另外的数据中心、更不用说与远程员工打交道,增添了复杂性和成本。结果就是,Hadoop集群可能显得过于孤立。
提到大数据,其实最核心的在于计算,像双11实时统计交易量、智慧交通实时统计拥堵指数,这些离不开高并发计算。经常我们在听到mapreduce、以及spark、hive、pig、spark streaming、Storm,很多词语让我们迷茫,但实际万变不离其中,计算最核心的还是在于mapreduce。因此了解mapreduce的运行原理是必须的。
有赞是一家商家服务公司,向商家提供强大的基于社交网络的,全渠道经营的 SaaS 系统和一体化新零售解决方案。随着近年来社交电商的火爆,有赞大数据集群一直处于快速增长的状态。在 2019 年下半年,原有云厂商的机房已经不能满足未来几年的持续扩容的需要,同时考虑到提升机器扩容的效率(减少等待机器到位的时间)以及支持弹性伸缩容的能力,我们决定将大数据离线 Hadoop 集群整体迁移到其他云厂商。
为了提升广大用户的文档的使用体验,现推出【大数据】产品文档定向捉虫活动。邀请大家对指定产品文档进行体验,反馈文档问题就有机会获得腾讯云电子代金券、京东储值卡和神秘好礼!发现和反馈的文档问题价值越高,奖品越丰厚。
spark是借鉴了Mapreduce,并在其基础上发展起来的,继承了其分布式计算的优点并进行了改进,spark生态更为丰富,功能更为强大,性能更加适用范围广,mapreduce更简单,稳定性好。主要区别
Hadoop是一个由Apache基金会所开发的分布式系统基础架构。用户可以在不了解分布式底层细节的情况下,开发分布式程序。充分利用集群的威力进行高速运算和存储。Hadoop实现了一个分布式文件系统(Hadoop Distributed File System),简称HDFS。HDFS有高容错性的特点,并且设计用来部署在低廉的(low-cost)硬件上;而且它提供高吞吐量(high throughput)来访问应用程序的数据,适合那些有着超大数据集(large data set)的应用程序。HDFS放宽了(relax)POSIX的要求,可以以流的形式访问(streaming access)文件系统中的数据。Hadoop的框架最核心的设计就是:HDFS和MapReduce。HDFS为海量的数据提供了存储,而MapReduce则为海量的数据提供了计算。
上一节我们讲到了大数据的存储 : https://cloud.tencent.com/developer/article/1878422
雷刚 发自 凹非寺 量子位 报道 | 公众号 QbitAI 2020年11月11日晚,又一年天猫双11狂欢接近尾声。 新交易纪录、新流量峰值,一切都是十全十美的样子。 此时,阿里巴巴CTO程立(鲁肃)才将一段实录视频公之于众—— 11月5日凌晨,阿里技术上下完成双11大考期间最后一次全链路压测后休息和交接间隙……服务器连续遭遇了两次攻击。 第一次,凌晨两点左右,监控大屏显示四个地区数据中心数值迅速下跌,技术保障团队启动紧急响应处理,确定遭遇了断网攻击。 紧接着第二次,2:10,更凶猛直接的攻击来了。华
Apache Spark是基于Hadoop MapReduce的数据分析引擎,它有助于快速处理大数据。它克服了Hadoop的限制,正在成为最流行的大数据分析框架。
每年双 11 开卖的那一刻,千万用户同时在线下单,那个瞬间服务器的压力是平时流量的数百倍,淘宝系统是否能够稳定支撑,是每年所有人关注的热点话题。
如果单纯从字面上,普通人可能无法理解要把 PB 级的数据迁移到一朵云上,难度有多大。 “这个迁移和简单的复制完全不一样,即便是拷贝,把1PB 的数据复制过来,也需要很长时间。”腾讯云大数据产品架构师李少波说。 少波说的这个正是一个月前他和另外3位同事,一起经历的一场云端迁移战事。 把时针拨到一个月之前,搜狐畅游技术有限公司(简称搜狐畅游)计划在8月初正式上线小浣熊百将传的新游戏,这款有着经典水浒卡授权的国风放置卡牌手游,预计在上线后将迅速风靡全球,这给搜狐畅游当时的大数据集群带来了严峻的挑战。 搜狐畅
本期技术沙龙将会聚焦在大数据、存储、数据库以及Alluxio应用实践等领域,邀请腾讯技术专家和业界技术专家现场分享关于Alluxio系统的基本原理、大数据系统架构、数据库应用运维、AI计算机视觉技术及落地实践等主题,带来丰富的实战内容和经验交流。
作者颜卫,腾讯高级后台开发工程师,专注于Kubernetes大规模集群管理和资源调度,有过万级集群的管理运维经验。目前负责腾讯云TKE大规模Kubernetes集群的大数据应用托管服务。
现在混迹技术圈的各位大佬,谁还没有听说过“大数据”呢?提起“大数据”不得不说就是Google的“三架马车”:GFS,MapReduce,Bigtable,分别代表着分布式文件系统、分布式计算、结构化存储系统。可以说这“三架马车”是大数据的基础。
按照以往经验,面对的流量会是平日的十几倍。所有人在高峰时段下单,一瞬间产生巨大的读写请求。
从 2009 年到 2021 年,从千万交易额到千亿交易额,双 11 已经开展了 12 年。如今,每年的双 11 以及一个月后的双 12,已经成为真正意义上的全民购物狂欢节。刚刚过去的 2021 年双 11,就有超过 8 亿消费者参与。
2020年9月11日,在腾讯全球数字生态大会大数据专场上,腾讯云大数据产品副总经理雷小平重磅发布了全链路数据开发平台WeData,同时发布和升级了流计算服务、云数据仓库、ES、企业画像等6款核心产品,进一步优化和提升了腾讯云大数据的全托管能力,助力企业从基础设施层、场景开发层以及行业应用层快速构建一站式大数据平台能力。
如果说,过去的购物是关于售货员、橱窗、柜台的,今天的柜台已经挪到了手机app上,橱窗变成了一张张图片和一段段视频,售货员变成了一个个带货主播。
这本书是公司一位负责数据库的同事推荐的,正好数据中心也在重构和优化,以应对更加海量的数据,所以便花了点时间读完了这本书。全书分了三个篇章:全局概览,从比较高的高度概述了大数据的概念及相关技术;离线数据开发,主要讲解了Hadoop和Hive以及相关的数据建模;实时数据开发,按照各个技术出现的时间先后,依次讲解了Storm、Spark、Flink和Beam。
9月11日,在腾讯全球数字生态大会大数据专场上,腾讯云大数据产品副总经理雷小平重磅发布了全链路数据开发平台WeData,同时发布和升级了流计算服务、云数据仓库、ES、企业画像等6款核心产品,进一步优化和提升了腾讯云大数据的全托管能力,助力企业从基础设施层、场景开发层以及行业应用层快速构建一站式大数据平台能力。 「 借助WeData,企业数据开发门槛降低60%」 雷小平表示:“构建大数据开发平台是企业数字化转型的关键步骤,然而从数据集成到开发调度等涉及的模块众多,导致整个平台的维护和升级成本非常高
Hadoop 使用 HDFS 来解决分布式数据问题,MapReduce 计算范式提供有效的分布式计算。
在企业数字化转型的当下,数据仓库的云端构建成为主流趋势,Gartner 预测,到2023年全球3/4的数据库都会跑在云上。 12月20日,腾讯2020 Techo Park开发者大会大数据分论坛在北京召开。腾讯数据平台部数据中心技术总监于洋、腾讯云大数据首席产品架构师高廉墀以及腾讯云大数据团队 Ozone 项目技术负责人陈怡等嘉宾出席大会,并探讨了数据仓库的多元技术,聚焦云端数据仓库的热潮,展现腾讯数据仓库技术架构演进与未来发展。 云原生数据仓库成为风口,助力解决企业数据仓库转型升级 从企业数字化转型看,
编写 shell 脚本,定期检测 master 状态,出现宕机后对 master 进行重启操作
集群是弹性 MapReduce( EMR )提供托管 服务的基本单元,也是用户使用和管理 EMR 服务的主要对象。本文为您介绍通过腾讯云官网控制台,快速创建 EMR 集群。
阿里江湖中,很多资源和技术,如神龙服务器、OceanBase、POLARDB等等,在开源、自研、云这三架马车上形成协同效应,既是内功也是武器。
即日起至11月30日,云开发 CloudBase “双 11”感恩特惠震撼来袭!今明两天,多款爆品参与秒杀+折扣**优惠力度,历 史 最 大,部分产品低至 0.4 折/直降 1100 元,价格降至冰冰冰冰冰冰冰冰冰冰冰点,话不多说,直接上图
1.实时分析 在我们开始之前,让我们来看看美国社交媒体比较有名的企业每分钟产生的数据量。
领取专属 10元无门槛券
手把手带您无忧上云