首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

【腾讯云 TDSQL-C Serverless 产品测评】“橡皮筋“一样的数据库『MySQL高压篇』

腾讯云TDSQL-C产品测评活动”是由腾讯云联合CSDN 推出的针对数据库产品测评及产品体验活动,本次活动主要面向 TDSQL-C Serverless 版;活动整体包括了技术分享直播及线上答疑、连续三个月做三季的产品体验、产品测评、优质征文活动以及最后的优秀用户线上圆桌对话直播环节:本次参与活动涵盖不同技术层面的用户,初步的产品体验或针对TDSQL-C产品的自动弹性能力、自动启停能力、兼容性、安全、并发、可靠性等多方面的产品测评,并通过征文的方式输出,参与活动的同时既可以收获相关技术领域的实战经验同时也可获得丰厚的活动激

05
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    大数据已死?谷歌十年老兵吐槽:收起 PPT 吧!数据大小不重要,能用起来才重要

    作者 | Jordan Tigani 译者 | 红泥 策划 | 李冬梅 随着云计算时代的发展,大数据实际已经不复存在。在真实业务中,我们对大数据更多的是存储而非真实使用,大量数据现在已经变成了一种负债,我们在选择保存或者删除数据时,需要充分考虑可获得价值及各种成本因素。 十多年来,人们一直很难从数据中获得有价值的参考信息,而这被归咎于数据规模。“对于你的小系统而言,你的数据量太庞大了。”而解决方案往往是购买一些可以处理大规模数据的新机器或系统。但是,当购买了新的设备并完成迁移后,人们发现仍然难以处

    03

    缓存层如何设计

    马克-to-win:我们前面讲过 了n-tier架构。在我们的程序当中,还可以设计一个缓存层。在去访问数据库之前,先看看缓存层中有没有数据,如果没有的话,从数据库取完数据回来,一 定要放在缓存层当中一份,下次就不用去数据库了。马克-to-win:如果对数据库当中,某个数据更新了,同时一定要记住也更新一下缓存当中的数据。这样的话,既保证了缓存的 数据是最新的,也保证了将来查询时不用去查数据库,减轻了对数据库的压力。 这里有些问题,问题1,如果除了你的项目,还有其他的地方可以更改数据库,怎么办?可以做一个守护线程,发现某个表的版本变了,就重新把表的数据加载回你 的缓存。问题2,对于条件查询,如何处理缓存?比如30元到50元的衣服数据的第二页。大家通常的做法是,把整个衣服表都加载到缓存中,无非就是一个 List,之后整个做个遍历,把符合条件的选出来。为什么要整个加载?因为别人还有可能要查20到40块钱的第五页的数据。问题3,项目a处需要看表的 123列,b处需要看表的456列,缓存时就直接把123456列作为一个表缓存起来,供两处使用。马克-to-win:顺便说一句,缓存也可以缓存图片。数据库和图片服务 器,可以认为是大的仓库,什么都能找到,而缓存可以看做是前端的商店,客户经常要买的东西就存一部分在商店,这样可以提高效率。如果商店没有相应的商品, 也不用着急,因为我们后面的仓库肯定有。

    00

    传统企业大数据应用难落地?说穿了还是因为这3点

    在中国,从2013年大数据元年始,上至国家总理,下至普通平民,大数据的词汇已经深入人心,大家都觉得大数据是个好事,但基本上都是叫好不叫坐,尤其是在传统企业中。现今的中国,大数据在互联网、电商、金融等行业都得到了很好的发展应用,而在传统企业举步维艰,究其原因,一般都有如下几点问题: 一是数据量太少的困扰。一般传统的大中型企业都已经进行了信息化的过程,也有了企业的完整的ERP系统,数据都已经采集到结构化数据库中,但这些结构化数据的量级和大数据PB级的量级相比,差之甚远。面对这种小量的数据,企业的DBA的解决方案

    07

    终于有人把云计算、大数据和人工智能讲明白了!

    来源:刘超的通俗云计算、大数据与机器学习文摘 本文约14200字,建议阅读20+分钟 本文为你详细介绍了云计算、大数据和人工智能。 今天跟大家讲讲云计算、大数据和人工智能。为什么讲这三个东西呢?因为这三个东西现在非常火,并且它们之间好像互相有关系:一般谈云计算的时候会提到大数据、谈人工智能的时候会提大数据、谈人工智能的时候会提云计算……感觉三者之间相辅相成又不可分割。但如果是非技术的人员,就可能比较难理解这三者之间的相互关系,所以有必要解释一下。 一、云计算最初的目标 我们首先来说云计算。云计算最初的目标

    02
    领券