这里名词只做个索引,方便理解,可能现在反而让理解变得更加复杂,不过没关系,我们主要是实现的就是自定义 build flag。更多参见这里[1]。
为了实现如标题所述的将多个静态库合并为一个动态库,内置的 Bazel 规则是没有这个功能的,Bazel C/C++ 相关的内置规则有:
宏是实例化规则的函数。当 BUILD 文件过于重复或过于复杂时,它就非常有用,因为它允许您重复使用某些代码。
本文会讲述 Bazel 自定义工具链的两种方式,Platform 和 Non-Platform 方式。会存在这两种方式的原因是 Bazel 的历史问题。例如,C++ 相关规则使用 --cpu 和 --crosstool_top 来设置一个构建目标 CPU 和 C++ 工具链,这样就可以实现选择不同的工具链构建 C++ 项目。但是这都不能正确地表达出“平台”特征。使用这种方式不可避免地导致出现了笨拙且不准确的构建 APIs。这其中导致了对 Java 工具链基本没有涉及,Java 工具链就发展了他们自己的独立接口 --java_toolchain。因此非平台方式(Non-Platform)的自定义工具链实现并没有统一的 APIs 来规范不同语言的跨平台构建。而 Bazel 的目标是在大型、混合语言、多平台项目中脱颖而出。这就要求对这些概念有更原则的支持,包括清晰的 APIs,这些 API 绑定而不是分散语言和项目。这就是新平台(platform)和工具链(toolchain) APIs 所实现的内容。
在当今的软件开发世界中,构建工具的选择对于提高开发效率、维护代码质量以及提升团队协作能力都至关重要。谷歌作为全球技术巨头,为了解决大规模代码构建和测试的挑战,开发了一款名为Bazel的构建工具。Bazel具有强大的功能和灵活性,已成为开源社区中的明星工具。本文将深入探讨谷歌的Bazel构建工具及其在软件开发中的应用。
Bazel 支持很多内置的规则,语言相关规则有 Shell、Objective-C、C++ 和 Java,比如 sh_binary、cc_binary、cc_import、cc_library、java_binary、java_import等。但是 Go 编译内置规则没有支持,不过好在 Bazel 支持规则扩展,可以自定义 Go 相关规则,包括可以实现如 go_binary、go_library、go_test等规则。而 `rules_go`[1] 就是 Bazel 官方维护的 Go Bazel 开源扩展规则。`gazelle`[2] 这个项目可以将 Go 项目转为 Bazel 方式构建,包括生成 BUILD.bazel 文件,根据 go.mod 文件自动生成下载依赖模块规则 go_repository。这里简单介绍下 rules_go 和 gazelle 相关内容,更多可以参考官方相关文档。
Istio由控制面和数据面组成。其中Envoy是Istio在数据面缺省使用的转发代理,Istio利用Envoy的四层和七层代理功能对网格中微服务之间的调用流量进行转发。今天我们来分析一下Istio 使用到的Envoy构建流程。
最近在 BazelCon 23 上宣布,Bazel 7 推出了多年来一直在开发中的一系列新功能,其中包括全新的模块化外部依赖管理系统 Bzlmod、全新优化的“Build without the Bytes”模式、得益于 Project Skymeld 的多目标构建性能改进等等。
Bazel是一个类似于Make的编译工具,是Google为其内部软件开发的特点量身定制的工具,如今Google使用它来构建内部大多数的软件。(怪不得看起来很像Android.bp语法 O(∩_∩)O)
不同编程语言编写的应用,在它运行的状态下,会有不同的运行机制,有的是以二进制的方式运行的,有运行在编程语言的虚拟机之上。而构建所做的事情呢,就是将那些我们写给人类看的代码,转换为机器/程序能看懂的代码。所以,构建的本质就是翻译(~~复读机~~)。
TensorFlow™是一个基于数据流编程(dataflow programming)的符号数学系统,被广泛应用于各类机器学习(machine learning)算法的编程实现,其前身是谷歌的神经网络算法库DistBelief。
Bazel 是 Google 公司于 2015 年开源的一款构建框架,至今收获了 21k 的 star 数,远超 gradle、maven、cmake 等同类产品。近几年来,字节阿里腾讯等互联网大厂也逐步拥抱 Bazel,搭建自己的构建体系。
对于个人和公司来说,存在许多状况是更希望在本地设备上做深度学习推断的:想象一下当你在旅行途中没有可靠的互联网链接时,或是要处理传输数据到云服务的隐私问题和延迟问题时。
本文的目的是分享在TX1上安装Tensorflow Serving时遇到的主要问题,避免重复踩坑。
我们之前的文章里经常使用常规规则(regular rules)函数 rule() 来创建自定义规则,但是这些规则都有一个问题:他们依赖于主机系统上安装的各种工具。这样就会出现一个问题,即构建是不可复制的,如果同一项目上的两个开发人员安装了不同版本的 Go SDK,则他们将构建不同的二进制文件。它还会中断远程执行,即主机的工具链可能在执行平台上不可用。而 repository_rule() 就可以解决这个问题。
选自DataScience 作者:Chia-Chun 机器之心编译 参与:Edison Ke、路雪 本文作者 Chia-Chun (JJ) Fu 是加州大学圣塔芭芭拉分校的化学工程博士。她在 Insight 工作的时候,在安卓系统上用 TensorFlow 部署了一个 WaveNet 模型。本文详细介绍了部署和实现过程。 对于个人和公司来说,存在许多状况是更希望在本地设备上做深度学习推断的:想象一下当你在旅行途中没有可靠的互联网链接时,或是要处理传输数据到云服务的隐私问题和延迟问题时。边缘计算(Edge c
C++ 编译与构建工具主要用于将 C++ 源代码转换为可执行程序。它们可以分为以下几类:
ubuntu 16.04 python 2.7 cuda7.5/Cuda8.0 tensorflow-gpu
内容来源:作者——shengofbig,链接:https://www.jianshu.com/p/d01472734a78,好文请多支持!谢谢你的阅读。
什么是TensorFlow? TensorFlow 是一个采用数据流图(data flow graphs),用于数值计算的开源软件库。节点(Nodes)在图中表示数学操作,图中的线(edges)则表示在节点间相互联系的多维数据数组,即张量(tensor)。它灵活的架构让你可以在多种平台上展开计算,例如台式计算机中的一个或多个CPU(或GPU)、服务器、移动设备等等。TensorFlow 最初由Google Brain 小组(隶属于Google机器智能研究机构)的研究员和工程师们开发出来,用于机器学习和深
Monarch 是 Pinterest 的批处理平台,由30多个 Hadoop YARN 集群组成,其中17k+节点完全建立在 AWS EC2 之上。2021年初,Monarch 还在使用五年前的 Hadoop 2.7.1。由于同步社区分支(特性和bug修复)的复杂性不断增加,我们决定是时候进行版本升级了。我们最终选择了Hadoop 2.10.0,这是当时 Hadoop 2 的最新版本。
随着其他组织将他们的构建管道迁移到Bazel 之后,Airbnb 也发布了一个详细的说明,分享了他们弃用 Buck 并改善构建时间以及项目生成和加载时间的过程。
选自DeepMind 作者:Malcolm Reynolds等 机器之心编译 参与:李泽南、Ellen Han 昨天,DeepMind 发布了 Sonnet,一个在 TensorFlow 之上用于构建复杂神经网络的开源库。这是继 DeepMind Lab 后,这家谷歌旗下的公司的又一次开源举措。Sonnet 的开源意味着 DeepMind 构建的模型可以更轻松地与所有开发者共享。 距 DeepMind 做出决定,在整个研究机构中使用 TensorFlow(TF) 已将近一年。事实证明这是一个明智的选择——较
技术是安身立命之本,实践出真知,熟能生巧,佐以业务能力,遇上风口之时,可逆天改命!
最近公司给我们分配了2台虚拟机服务器用于强化学习训练,我们在虚拟环境中安装好了TensorFlow环境后,在import tensorflow时发现报了下面的错误:
最近公司给我们分配了2台虚拟机服务器用于强化学习训练,我们在虚拟环境中安装好了TensorFlow环境后,在import tensorflow时发现报了下面的错误: 于是我去Google搜索了下出现这个错误的原因,发现是因为我们服务器的CPU不支持AVX指令集导致的,而使用pip安装的TensorFlow需要依赖AVX指令集,为了确认我们的CPU是否真的不支持AVX指令集,我使用cat /proc/cpuinfo 命令查看了下目前CPU指令集支持情况,发现我们的CPU果然不支持AVX指令集。 又不支持
MediaPipe是用于构建跨平台多模态应用ML管道的框架,其包括快速ML推理,经典计算机视觉和媒体内容处理(如视频解码)。下面是用于对象检测与追踪的MediaPipe示例图,它由4个计算节点组成:PacketResampler计算器;先前发布的ObjectDetection子图;围绕上述BoxTrakcing子图的ObjectTracking子图;以及绘制可视化效果的Renderer子图。
苹果公司最近更新了应用商店审核指南[3],现在允许模拟器应用进入 App Store。就在几天前,名为 Delta 的模拟器应用登陆了应用商店。Delta 是一款为 iOS 设计的综合模拟器,支持多种任天堂掌机游戏。这款应用其实很早以前就已经开发完成,但之前由于政策限制,只能以非商店形式提供给用户。
在了解如何利用TesnsorFlow构建和训练各种模型——从基本的机器学习模型到复杂的深度学习网络后,我们就要考虑如何将训练好的模型投入于产品,以使其能够为其他应用所用,本文对此将进行详细介绍。文章节选自《面向机器智能的TensorFlow实践》第7章。 本文将创建一个简单的Web App,使用户能够上传一幅图像,并对其运行Inception模型,实现图像的自动分类。 搭建TensorFlow服务开发环境 Docker镜像 TensorFlow服务是用于构建允许用户在产品中使用我们提供的模型的服务器的工具。
ObjectDetection子图仅在请求时运行,例如以任意帧速率或由特定信号触发。更具体地讲,在将视频帧传递到ObjectDetection之前,本示例中的PacketResampler将它们暂时采样为0.5 fps。你可以在PacketResampler中将这一选项配置为不同的帧速率。正是因为如此,在识别的时候可以时间抖动更少,而且可以跨帧维护对象ID。
在本篇文章中,我们将会介绍TensorFlow的安装,TensorFlow是Google公司在2015年11月9日开源的一个深度学习框架。
刷机的目的是把Ubuntu操作系统和JetPack SDK安装到Jetson TX2上。刷机的操作按照官方教程即可,比较容易。这个过程中有一点需要注意:Jetson TX2和宿主机Host必须连接在同一个路由器之下。Host会先把操作系统刷到TX2上,这一步是通过数据线连接的方式完成,然后使用SSH的方式安装Host上的SDK到TX2,所以Host和TX2需要连接在同一个路由器下,方便Host找到TX2的ip地址。
作者:柴锋 原文链接:https://chaifeng.com/unit-testing-bash-scripts/
选自Matrices.io 作者:Florian Courtial 机器之心编译 参与:李泽南、蒋思源 很多人都知道 TensorFlow 的核心是构建在 C++之上的,但是这种深度学习框架的大多数功能只在 Python API 上才方便使用。 当我写上一篇文章的时候,我的目标是仅使用 TensorFlow 中的 C++ API 和 CuDNN 来实现基本的深度神经网络(DNN)。在实践中,我意识到在这个过程中我们忽略了很多东西。 注意,使用外部操作(exotic operations)训练神经网络是不可能
Tensorflow, Envoy, Kubernetes, KubeVirt 等等大型项目都是用 Bazel 构建的,要参与开发这些项目或者基于这些项目做开发,不能避开Bazel,且Bazel是当前开源Build System里最先进也最代表着未来方向的产品,非常有必要掌握。
摘要总结:本文主要介绍了在Ubuntu 16.04上配置Nvidia显卡驱动的方法,包括安装前的准备、下载驱动、安装驱动和配置环境。同时,还介绍了如何安装CUDA和Cudnn,以及如何在Ubuntu 16.04上安装Bazel构建C++项目。
本文示例可见:https://github.com/ikuokuo/start-cpp20
经过三年的试用,2020 年,Spotify 决定采用 Bazel 作为 Spotify iOS 应用程序的官方构建系统。按照 Spotify 工程师 Patrick Balestra 的说法,这一切换将他们的构建时间减少了四分之三。
原因还是以前常见的镜像服务错误:http: server gave HTTP response to HTTPS client
Tensorflow Lite官方在移动端提供了官方编译好的库,我们直接拿来用就好。Tensorflow 在Linux平台与Mac平台下编译也非常轻松,基本不会遇到太多问题(据说Google内部只用Linux与Mac)。但是在Windows下编译真是一波三折,好在已经编译成功了,记录一下Windows 10下Tensorflow Lite编译过程,帮助一下跟我一样被Tensorflow折腾的不行的人。
本文介绍了如何使用深度学习模型进行图像分类,并探讨了在训练和评估模型时出现的问题及解决方案。
让我们考虑下面这个简单的深度神经网络,它的每一层都只包含一个神经元,一共有三个隐藏层:
操作系统:GUN Linux操作系统AARCH64架构。 istio-proxy版本:istio-proxy1.15.2
是否能够更快地训练和提供对象检测模型?我们已经听到了这种的反馈,在今天我们很高兴地宣布支持训练Cloud TPU上的对象检测模型,模型量化以及并添加了包括RetinaNet和MobileNet改编的RetinaNet在内的新模型。本文将引导你使用迁移学习在Cloud TPU上训练量化的宠物品种检测器。
作为一名围棋渣渣,时不时会上对弈平台下下棋。围棋太博大精深,非常惭愧,虽然在下棋上花的时间很多,但一直处在菜鸟阶段,长期在1级和1段之间徘徊(腾讯野狐围棋上的排位)。要提升水平,需要下功夫去记定式、做死活题,但那太枯燥了,相较而言,我更喜欢上网厮杀,屠龙或被屠,爽一把再说。我等初级选手,经常会碰到那种不按套路的对手,有时明明觉得对方下了无理手,但就是不知道如何反击。再就是棋盘太空旷,不知如何选点。这些虽然在书上可以学到一些基本技巧,但一到实战,往往不知如何下手。
领取专属 10元无门槛券
手把手带您无忧上云