首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

找到C中的最高位

在计算机中,找到C中的最高位可以通过以下方法实现:

  1. 使用位运算符:
代码语言:c
复制
int findHighestBit(int c) {
    int highestBit = 0;
    while (c >>= 1) {
        highestBit++;
    }
    return highestBit;
}
  1. 使用位运算符和位操作符:
代码语言:c
复制
int findHighestBit(int c) {
    int highestBit = 0;
    int bit = 1 << 31;
    while (bit > 0) {
        if (c & bit) {
            highestBit = bit;
        }
        bit >>= 1;
    }
    return highestBit;
}
  1. 使用标准库函数:
代码语言:c
复制
#include <math.h>

int findHighestBit(int c) {
    return (int)log2(c);
}

这些方法都可以找到C中的最高位。请注意,这些方法都是基于整数的,如果您需要处理其他类型的数据,请根据需要进行修改。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • 计算机程序的思维逻辑 (6) - 如何从乱码中恢复 (上)?

    我们在处理文件、浏览网页、编写程序时,时不时会碰到乱码的情况。乱码几乎总是令人心烦,让人困惑。希望通过本节和下节文章,你可以自信从容地面对乱码,恢复乱码。 谈乱码,我们就要谈数据的二进制表示,我们已经在前两节谈过整数和小数的二进制表示,接下了我们将讨论字符和文本的二进制表示。 由于内容比较多,我们将分两节来介绍。本节主要介绍各种编码,乱码产生的原因,以及简单乱码的恢复。下节我们介绍复杂乱码的恢复,以及Java中对字符和文本的处理。 编码和乱码听起来比较复杂,文章也比较长,但其实并不复杂,请耐心阅读,让我们

    05

    二进制加,减法,23个位运算技巧[通俗易懂]

    二进制最高位为1时表示负数,为0时表示正数。 **原码:**一个正数,转换为二进制位就是这个正数的原码。负数的绝对值转换成二进制位然后在高位补1就是这个负数的原码。 举例说明:       int类型的 3 的原码是 11B(B表示二进制位), 在32位机器上占四个字节,那么高位补零就得:       00000000 00000000 00000000 00000011       int类型的 -3 的绝对值的二进制位就是上面的 11B 展开后高位补零就得:       10000000 00000000 00000000 00000011 **反码:**正数的反码就是原码,负数的反码等于原码除符号位以外所有的位取反。 举例说明:       int类型的 3 的反码是       00000000 00000000 00000000 00000011       和原码一样没什么可说的       int类型的 -3 的反码是       11111111 11111111 11111111 11111100       除开符号位 所有位 取反 **补码:**正数的补码与原码相同,负数的补码为 其原码除符号位外所有位取反(得到反码了),然后最低位加1. 还是举例说明:       int类型的 3 的补码是:       00000000 00000000 00000000 00000011       int类型的 -3 的补码是       11111111 11111111 1111111 11111101       就是其反码加1

    03

    PE文件详解(六)

    这篇文章转载自小甲鱼的PE文件详解系列原文传送门 之前简单提了一下节表和数据目录表,那么他们有什么区别? 其实这些东西都是人为规定的,一个数据在文件中或者在内存中的位置基本是固定的,通过数据目录表进行索引和通过节表进行索引都是可以找到的,也可以这么说,同一个数据在节表和数据目录表中都有一份索引值,那么这两个表有什么区别?一般将具有相同属性的值放到同一个节区中,这也就是说同一个节区的值只是保护属性相同,但是他们的用途不一定是一样的,但是在同一数据目录表中的数据的作用是相同的,比如输入函数表中只会保存输入函数的相关信息,输出函数表中只会保存输出函数的信息,而输入输出函数在PE文件中可能都位于.text这个节中。

    02

    别用 KMP 了, Rabin-Karp 算法了解下?

    经常有读者留言,请我讲讲那些比较经典的算法,我觉得有这个必要,主要有以下原因: 1、经典算法之所以经典,一定是因为有独特新颖的设计思想,那当然要带大家学习一波。 2、我会尽量从最简单、最基本的算法切入,带你亲手推导出来这些经典算法的设计思想,自然流畅地写出最终解法。一方面消除大多数人对算法的恐惧,另一方面可以避免很多人对算法死记硬背的错误习惯。 我之前用状态机的思路讲解了 KMP 算法,说实话 KMP 算法确实不太好理解。不过今天我来讲一讲字符串匹配的另一种经典算法:Rabin-Karp 算法,这是一个很简单优雅的算法。 本文会由浅入深地讲明白这个算法的核心思路,先从最简单的字符串转数字讲起,然后研究一道力扣题目,到最后你就会发现 Rabin-Karp 算法使用的就是滑动窗口技巧,直接套前文讲的 滑动窗口算法框架 就出来了,根本不用死记硬背。 废话不多说了,直接上干货。 首先,我问你一个很基础的问题,给你输入一个字符串形式的正整数,如何把它转化成数字的形式?很简单,下面这段代码就可以做到: string s = "8264"; int number = ; for (int i = ; i < s.size(); i++) { // 将字符转化成数字 number = * number + (s[i] - '0'); print(number); } // 打印输出: // 8 // 82 // 826 // 8264 可以看到这个算法的核心思路就是不断向最低位(个位)添加数字,同时把前面的数字整体左移一位(乘以 10)。 为什么是乘以 10?因为我们默认探讨的是十进制数。这和我们操作二进制数的时候是一个道理,左移一位就是把二进制数乘以 2,右移一位就是除以 2。 上面这个场景是不断给数字添加最低位,那如果我想删除数字的最高位,怎么做呢?比如说我想把 8264 变成 264,应该如何运算?其实也很简单,让 8264 减去 8000 就得到 264 了。 这个 8000 是怎么来的?是 8 x 10^3 算出来的。8 是最高位的数字,10 是因为我们这里是十进制数,3 是因为 8264 去掉最高位后还剩三位数。 上述内容主要探讨了如何在数字的最低位添加数字以及如何删除数字的最高位,用R表示数字的进制数,用L表示数字的位数,就可以总结出如下公式: /* 在最低位添加一个数字 */ int number = ; // number 的进制 int R = ; // 想在 number 的最低位添加的数字 int appendVal = ; // 运算,在最低位添加一位 number = R * number + appendVal; // 此时 number = 82643 /* 在最高位删除一个数字 */ int number = ; // number 的进制 int R = ; // number 最高位的数字 int removeVal = ; // 此时 number 的位数 int L = ; // 运算,删除最高位数字 number = number - removeVal * R^(L-); // 此时 number = 264 如果你能理解这两个公式,那么 Rabin-Karp 算法就没有任何难度,算法就是这样,再高大上的技巧,都是在最简单最基本的原理之上构建的。不过在讲 Rabin-Karp 算法之前,我们先来看一道简单的力扣题目。 高效寻找重复子序列 看下力扣第 187 题「重复的 DNA 序列」,我简单描述下题目: DNA 序列由四种碱基A, G, C, T组成,现在给你输入一个只包含A, G, C, T四种字符的字符串s代表一个 DNA 序列,请你在s中找出所有重复出现的长度为 10 的子字符串。 比如下面的测试用例: 输入:s = "AAAAACCCCCAAAAACCCCCCAAAAAGGGTTT" 输出:["AAAAACCCCC","CCCCCAAAAA"] 解释:子串 "AAAAACCCCC" 和 "CCCCCAAAAA" 都重复出现了两次。 输入:s = "AAAAAAAAAAAAA" 输出:["AAAAAAAAAA"] 函数签名如下: List<String> findRepeatedDnaSequences(String s); 这道题的拍脑袋解法比较简单粗暴,我直接穷举所有长度为 10 的子串,然后借助哈希集合寻找那些重复的子串就行了,代码如下: // 暴力解法 List<String> findRepeatedDnaSequences(String s) { int n = s.length(); // 记录出现过的子串 HashSet<String> seen = new HashSet(); // 记录那些重复出现多次的子串 // 注

    02

    给定一个数组,求子数组的最大异或和

    直接说这道题时间复杂度O(n)的做法,构建前缀树。假设将0-0、0-1、0-2、...、0-i-1的异或结果全部装在前缀树中,那么以i结尾的最大异或和就是0到某一位置x的异或结果和i异或结果最大,举个例子,假设x是3,0-3的异或结果和i进行异或得到的结果最大,那么就说明4-i的异或结果是最大的。  但是如何知道x到底是多少,换句话说,0-x中哪个值和i进行异或得到的结果最大。其实这个也比较好想,假设i是0100(最高位0是符号位),只需要沿着前缀树找到0011,异或出来的结果就是0111,一定就是最大的,如果不能刚好找到合适的,那就有什么选什么,只要保证从最高位开始往下每次的决策是最优的就行  有一种特殊情况,假设i还是0100,但是此时前缀树中最高位只有1,没有0,那么最高位得出的异或结果永远是负数,后面的位应该如何选?其实也是按照最优决策去选,假设异或结果是1111,那么转换为十进制就是-1,绝对没有比这还大的负数了

    01

    【优质题解】题解1110:2^k进制数 减法思维(C语言描述)

    设r是个2^k 进制数,并满足以下条件: (1)r至少是个2位的2^k 进制数。 (2)作为2^k 进制数,除最后一位外,r的每一位严格小于它右边相邻的那一位。 (3)将r转换为2进制数q后,则q的总位数不超过w。 在这里,正整数k(1≤k≤9)和w(k〈w≤30000)是事先给定的。 问:满足上述条件的不同的r共有多少个? 我们再从另一角度作些解释:设S是长度为w 的01字符串(即字符串S由w个“0”或“1”组成),S对应于上述条件(3)中的q。将S从右起划分为若干个长度为k 的段,每段对应一位2^k进制的数,如果S至少可分成2段,则S所对应的二进制数又可以转换为上述的2^k 进制数r。 例:设k=3,w=7。则r是个八进制数(2^3=8)。由于w=7,长度为7的01字符串按3位一段分,可分为3段(即1,3,3,左边第一段只有一个二进制位),则满足条件的八进制数有: 2位数:高位为1:6个(即12,13,14,15,16,17),高位为2:5个,…,高位为6:1个(即67)。共6+5+…+1=21个。 3位数:高位只能是1,第2位为2:5个(即123,124,125,126,127),第2位为3:4个,…,第2位为6:1个(即167)。共5+4+…+1=15个。 所以,满足要求的r共有36个。

    02
    领券