从报表需求的整个发展历程来看,可以分为两个阶段: 1、静态报表:解决显示、打印、导出报表数据的需要。 2、交互式报表:解决终端用户分析数据的需要,通常会用到数据可视化、向下钻取、贯穿钻取、数据过滤、数据排序等功能。 这篇文章主要介绍ActiveReports中交互式报表中常用到的数据分析方法。 (一) 数据可视化 数据可视化技术是将数据以图形化的方式进行显示,让数据更易于阅读、理解和分析。早期的数据可视化以图表(Chart)为主,现代商业报表中逐渐加入迷离图(Sparkline)、数据条(Bullet)、图
年中时候,老板想看下上半年的销售报表数据,希望看到公司销售状况指标和其变动趋势的信息,以期了解产品、地域、行业发展情况,并为下半年的运营发展提供决策依据,衡量成本和广告投放渠道价值。
模板预览就是指在 Web 端查看模板效果,FineReport 提供了多种不同的预览方式,来满足用户的多样化需求。
经常有人说,做好财务,你就有可能是下一个CEO,为什么?因为财务分析实在太重要了。
作者 CDA 数据分析师 一套完整的 BI 报表应该至少具备以下四个条件: 条件一:能够批量处理有一定规模的数据; 条件二:能够保证数据的时效性及准确性; 条件三:能够将实际业务中所涉及的所有相关数
在企业数据建设过程中,都离不开大数据平台建设,大数据平台建设涉及数据采集、数据存储、数据仓库构建、数据处理分析、数据挖掘机数据可视化等等一系列流程。
数据报表产品经理是很多转行或者入行的数据产品经理的首选方向,很多公司或者求职者对数据产品经理岗位的理解也是如此,就是出数据,做报表的。关于数据产品经理的岗位分类往期文章做了很详细的描述不再赘述。在这个国际形式复杂,疫情反复的冬天,不管是毕业求职还是社招换工作,都切实感受到了寒意,不为贩卖焦虑,只是想针对数据报表这个方向的数据产品经理求职者一点点建议。
随着市场环境的复杂化,在数据分析中,能否提供更具商业洞察力的数据信息正在成为考核业务员能力的重要参考指标。加强以下两大块能力至关重要:
做报表,是为了在业务中发挥作用的,不是给数据分析师自嗨的。而往往同学们做报表最头疼的问题,就是:辛苦做的报表没人看,需要数据时又跑来临时性取数,搞得人烦不胜烦。所以报表不在花里胡哨,业务部门想用、能用、有用就最好了。
相信很多人在做数据分析工作的时候都遇到这种情况,辛辛苦苦做出来的数据报表老板看了嫌弃不够直观、生动,客户看了嫌弃不够高大上。这个时候不妨尝试一下使用Dashboard来展示报表数据,可能有些人对Dashboard不是很熟悉,没关系今天让小编带大家来认识一下Dashboard究竟是何方神圣,它在数据展示上又有哪些优势,以此来帮助大家更好的完成数据分析工作。
商业智能(BI)是Gartner与1996年提出的,他描述了一些了的概念和方法,通过应用基于事实的支持系统来辅助商业决策的制定。无数历史经验表明,充分利用现有的新知识、新技术,需要耗费几十年甚至一代人的时间。所以直到现在,大多数企业仍然缺乏数据化管理与决策所必须的信息化设施、配套制度和文化。但所幸的是,当前人们的观念认识、相关技术已经十分成熟,企业可以很容易的取得BI应用方面的进展,利用BI增加竞争优势并促进创新。
作为数据分析师的你,是否和我一样经常会被业务方拿着两个不同数据平台的报表数据进行灵魂拷问。下面的场景你应该在熟悉不过了。
关于作者:我是水大人,资深潜水员,一个基于开发、面向分析、走向全栈的饱经摧残的数据新手,爱折腾不爱玩,爱总结爱思考的老兵,错了改改了又错的惯犯。
数据可视化,是关于数据视觉表现形式的科学技术研究。其中,这种数据的视觉表现形式被定义为,一种以某种概要形式抽取出来的信息,包括相应信息单位的各种属性和变量。
报表,从来都是商业领域的主角,而随着商业智能(BI),大数据时代的到来,报表更加成为了业务系统的核心组成。因此传统的格式已经无法满足新的需求,最终用户期望在一张报表中看到更多的汇总、分类信息,而往往这些汇总和分类信息是不固定的,比如下面这张报表
在葡萄城ActiveReports报表中可以通过矩阵控件非常方便的实现交叉报表,同时还可以设置数据的分组、排序、过滤、小计、合计等操作,可以满足您报表的智能数据分析等需求。在矩阵控件中组的行数和列数由每个行分组和列分组中的唯一值的个数确定。同时,您可以按行组和列组中的多个字段或表达式对数据进行分组。在运行时,当组合报表数据和数据区域时,随着为列组添加列和为行组添加行,矩阵将在页面上水平和垂直增长。 在矩阵控件中,也可以包括最初隐藏详细信息数据的明细切换,然后用户便可单击该切换以根据需要显示更多或更少的详细信
数据分析一直以来都是业务决策中非常重要的一环,在数字化时代尤其如此。然而,数据分析只有在持续的监控和可视化下才能真正发挥作用。如何采用使用一些高效的工具来做相应的数据分析?前端开发报表工具就是一个不错的选择。它可以为企业提供可视化的数据分析,让用户能够快速准确地理解和处理数据,为企业决策提供支持。
在企业的信息系统中,数据随着时间逐步积累,包括订单、库存、交易账户、客户和供应商等等,还包括来自企业所在行业和竞争对手的数据。
任务调度是一个通用的计算机概念,可以简单地理解为计算机基于一定时间频率,自动执行一项进程任务。任务调度是操作系统的重要组成部分,Windows系统中的定时任务和Linux的Crontab都是常用的系统级调度器,被广泛应用于各种定时执行程序的场景。在传统商业智能BI领域,系统的调度器也经常被作为ETL作业的调度器。作业任务会通过T+1或者更高的时间频率进行调度执行。
一套完整的BI报表应该至少具备以下四个条件: 条件一:能够批量处理有一定规模的数据; 条件二:能够保证数据的时效性及准确性; 条件三:能够将实际业务中所涉及的所有相关数据整合到一起,搭建统一的多维数据
大数据一直被定义为3V(数量大,速度快,多样性) ,为了支撑数据分析服务的正常运行,BI工具的报表快速处理能力也需要与时俱进。
感谢您在百忙之中抽出时间来阅读此信。虽然未曾谋面,但我们关注您已经有很长一段时间了。
辛辛苦苦跑的数据没人理,对数据分析师/专员来说是一件极具挫败感的事情。如果在日常更新数据的同时,还要接大量没头没尾的临时性需求,就更有挫败感了。如果发现接的临时性需求其实可以用日常数据替代,就更有挫败感了。“求求各位大爷看一眼报表好不好!”一股怨气油然而生。每天埋头跑数没人理,葬送数据新人职业发展的头号杀手。
工欲善其事,必先利其器。随着互联网行业的飞速发展,越来越多的企业意识到BI工具对企业的业务发展有很大的推动作用,使得工作效率更高更强。目前市面出现的数据分析BI工具,不管是从使用场景,还是适用人群上,都存在着绝对的差异。目前,市面上的BI工具种类繁多,客户在进行BI工具选型时,眼花缭乱,不知所措。以下,就从技术来源上可以将市面上的BI工具做个简单分类,方便了解。
很多大型企业需要对各种销售及营销数据进行实时同步分析,例如销售订单信息,库存信息,会员信息,设备状态信息等等,这些统计分析信息可以实时同步到Doris中进行分析和统计,Doris作为分析型数据库特别适合于对海量数据的存储和分析,我们只需要把MySQL的表单数据实时同步到Doris即可以实现实时数据分析能力。
本文为CDA金牌讲师李奇原创,转载请在本平台申请授权 随着大数据时代的到来,企业管理者对数据价值的重视度越来越高,他们渴望从企业内外部数据中获得更多的信息财富,并以此为依据,帮助自己做出正确的战略决策。在此种大环境下,缺乏洞察力的传统业务报表已经开始无法满足复杂市场环境中的企业决策需求,在很多企业中,“能否基于业务分析提供更具商业洞察力的数据信息”正在逐步取代“能否准确、及时地提供业务报表”成为考核业务人员能力的重要参考指标。为了能够提供更具洞察力的信息,需要业务人员强化以下两类能力: 强化所从事业务工作中
随着数字化时代的迅速发展,各企业所产生的数据量也急剧增长,传统的数据分析方法显然已跟不上时代的发展,如何处理分析大量的数据是很多企业所面临的难题。许多企业将目光投向了商业智能BI软件,以期帮助他们解决数据处理分析难题,提升企业竞争力。那么,商业智能BI软件到底能为企业带来哪些好处呢?
帆软公司是国内一家做大数据 BI 和分析平台的提供商,主打产品是 FineBI。笔者所在阿里数据中台也处于数据分析应用的前沿,本次精读的文章就是帆软公司的 《数据之上 智慧之光 2018》,感谢提供这份国内数据市场研究报告,让我们更深入全面的了解国内数据市场的发展方向。
当今时代,报表作为信息化系统的重要组成部分,在日常的使用中发挥着关键作用。借助报表工具使得数据录入、分析和传递的过程被数字化和智能化,大大提高了数据的准确性及利用的高效性。而在此过程中,信息化系统能够实现对数据的实时监控和更新,为管理者提供及时、准确的业务数据,帮助他们做出更加合理的决策。
“这家渠道商,可能会有二心。”李波是永洪科技营销中心副总经理,显然他并不是能掐会算,更没有得到内部消息。但李波还是向客户的渠道总监,提出了自己的看法。因为关键信息就明明白白地摆在表格里,这家渠道商销售、库存、进货等环节的关联数据,明显存在异常。
项目管理是在项目活动中运用专门的知识、技能、工具和方法,使项目能在有限资源下,实现或超过设定的需求和期望的过程,是对成功地达成一系列目标相关的活动的整体监测和管控。
使用 FineReport 设计器设计模板,首先需要了解 FineReport 模板制作的思路,沿着其思路来了解 FineReport 报表中的所有功能。
Growth Hacking这个词在过去一两年开始迅速从硅谷传播到国内,也诞生了一系列专注于企业数据分析业务的明星初创公司,如GrowingIO,神策数据,诸葛IO等。Growth Hacking简单的来说就是用数据驱动的方式来指导产品的迭代改进,以实现用户的快速增长,可以看看上面几家数据分析公司披露的客户就知道它有多流行了: GrowingIO客户:有赞,豆瓣,36Kr等 神策数据客户:秒拍,AcFun,爱鲜蜂,pp租车等 诸葛IO客户:Enjoy,罗辑思维等 我司的一个主要产品是面向中小诊所的运营S
数据猿导读 证券行业是中国计算机应用高度密集的行业之一,如何利用好各项数据是券商摆脱低层次的同质化竞争,走向差异化服务优势的重要途径。那么以数据为基础,通过数据分析指导服务和决策就显得尤为重要。 本篇
在葡萄城ActiveReports报表中提供强大的数据分析能力,您可以通过图表、表格、图片、列表、波形图等控件来实现数据的贯穿钻取,在一级报表中可以通过鼠标点击来钻取更为详细的数据。 本文展示的是20
导言:地产企业面临着独特的数字化转型难题:业务广泛、资源庞杂、管理琐碎,导致了数据体系的凌乱,没有使数据资产真正发挥应有的价值。如何将数据分析工作真正的聚焦到企业独特的业务发展需求上?这篇文章告诉你。
分页预览即普通预览模式,FineReport 的默认预览方式,一般在只需要查看报表数据用于分析的时候使用。
数据分析和可视化一直是大数据时代的热门话题。如今这一个数据为王的时代,当你使用某个产品,划划手指,动动鼠标,甚至一颦一笑都会被记录下来,送至服务器。然而,大量的数据光收集是没有意义的,就好比资料控在硬盘里放了几百个G的电子书却只收集不阅读一样,如果不分析数据,不可视化,那么数据再多也不过是一堆毫无用处的符号而已。本文转自和途客圈颇有渊源的一位正在创业的朋友的文章,讲述他自己在自百度起,到创立SensorsData,对多维数据分析模型孜孜以求的经历和感悟,供大家参考。感兴趣的,可以尝试他们的服务:sensor
导读:随着企业规模不断扩大,业务发展多元化,企业管理层越来越重视利用数据提升业务的创新能力、经营管理能力。因此,能够加强数据利用率、提升各部门工作效率的数据中台应运而生。
App精细化运营的必由之路是什么?一定是要搭建强大的数据统计管理系统,在此基础上进行高效的分析和运营。openinstall的应用统计功能就能满足全面的App数据统计和分析需求。
在数据分析中,按照具体维度将数据分组进行组间比较是十分常见的,例如在零售业态中,按照性别、城市、收入水平将消费者进行分组进行对比分析。看似简单,其实这其中经常伴随着拍脑袋决策的危险。以下数据案例可以说
数据分析开发过程中,数据报表开发是常见的需求,利用Python开发定制化分析报表。业务数据实时刷新,自动生成各类报表,告别重复做表,大大提升工作效率。
笔者之前就看到过增强分析这个概念,只不过没有特意留意,最近也是在总结一些手边工作,通过观察了一些技术部门关于数据分析产品的设计思路,笔者觉得增强分析这个概念背后的趋势,确实是现在很多数据分析类产品的趋势。
动态的可视化大家都见得比较多了,比如说下面这种,展现数据根据数据库的数据变化来进行变化,有利于实时监控数据的情况。
1各组件简介 重点组件: HDFS:分布式文件系统 MAPREDUCE:分布式运算程序开发框架 HIVE:基于大数据技术(文件系统+运算框架)的SQL数据仓库工具 HBASE:基于HADOOP的分布式海量数据库 ZOOKEEPER:分布式协调服务基础组件 Mahout:基于mapreduce/spark/flink等分布式运算框架的机器学习算法库 Oozie:工作流调度框架(Azakaba) Sqoop:数据导入导出工具 Flume:日志数据采集框架 2. 数据分析流程介绍
根据报表的布局、数据源结构、打印方式和数据分析方式,可将应用系统中的报表分为以下类型: 清单报表 图表报表 分栏报表 分组报表 交叉报表 并排报表 主从报表 套打报表 交互式报表
下文为电子表格大会主席李奇在论坛上的分享。 一般我都先讲Power BI,今天被前面老师讲了,我想了半天,该讲什么好呢,最后决定给大家先讲一个我自身的故事,跟大家分享一下我是如何接触到Power BI以及Excel商业智能的吧。 很多人都问我专业不对口能否做数据分析,其实我想跟大家说,我是学考古的,所以大家只要想干一切皆有可能。 2011年以前我都在日本,在日本待了11年,在日本做过程序员,也做过开发工程师,也给日本那边失业的人进行Excel培训。2011年回国之后,我到了IBM,做销售运营管理数据分析。做
领取专属 10元无门槛券
手把手带您无忧上云