上一篇我们介绍了De Bruijin序列的基本数学内容以及其如何应用在魔术上的一些基本内容,今天我们就来学习一下这个经典的《De Bruijin序列》魔术。
两道类似的题目,首先来看第一道,给定一个数值以及硬币的面值,问组合成这个面值最少需要硬币的个数。
原题链接:https://leetcode-cn.com/problems/longest-palindromic-substring
在文章[LeetCode]动态规划及LeetCode题解分析中,Jungle介绍到求解动态规划类问题,一般分为三个步骤,这里做个简单回顾:
递归就是一个函数在它的函数体内调用它自身。执行递归函数将反复调用其自身,每调用一次就进入新的一层。递归函数必须有结束条件。 当函数在一直递推,直到遇到墙后返回,这个墙就是结束条件。 所以递归要有两个要素,结束条件与递推关系
斐波那契数 (通常用 F(n) 表示)形成的序列称为 斐波那契数列 。该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和。也就是:
使用动态规划求解问题,最重要的就是确定动态规划三要素: (1)问题的阶段 (2)每个阶段的状态 (3)从前一个阶段转化到后一个阶段之间的递推关系。 递推关系必须是从次小的问题开始到较大的问题之间的转化,从这个角度来说,动态规划往往可以用递归程序来实现,不过因为递推可以充分利用前面保存的子问题的解来减少重复计算,所以对于大规模问题来说,有递归不可比拟的优势,这也是动态规划算法的核心之处。 确定了动态规划的这三要素,整个求解过程就可以用一个最优决策表来描述,最优决策表是一个二维表,其中行表示决策的阶段,列表示问题状态,表格需要填写的数据一般对应此问题的在某个阶段某个状态下的最优值(如最短路径,最长公共子序列,最大价值等),填表的过程就是根据递推关系,从1行1列开始,以行或者列优先的顺序,依次填写表格,最后根据整个表格的数据通过简单的取舍或者运算求得问题的最优解。 f(n,m)=max{f(n-1,m), f(n-1,m-w[n])+P(n,m)}
在文章[LeetCode]动态规划及LeetCode题解分析中,Jungle介绍到求解动态规划类问题,一般分为三个步骤:
求 1+2+3+3+...n 的和。 二逼青年: 首数加位数 ,乘以个数除以 2
加法原理:集合元素可以被划分为集合族F = {S1, S2, S3…}则S的元素个数是这些元素个数之和:|S| = |S1| + |S2| + |S3|+…|Sn|
简介 卡特兰数又称卡塔兰数,卡特兰数是组合数学中一个常出现在各种计数问题中的数列。 卡塔兰数的一般项公式为: 卡特兰公式 其前20项为:1, 1, 2, 5, 14, 42, 132, 429, 1
数字 n 代表生成括号的对数,请你设计一个函数,用于能够生成所有可能的并且 有效的 括号组合。
假设你正在爬楼梯。需要 n 阶你才能到达楼顶。每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?
大意:有n种不同大小的硬币,面值是ai每种有mi个,题目问,这些硬币能够在价格1-m之间,付款多少种金额?
动态规划是求解“最小路径”的常用方法之一,LeetCode上关于“最小路径”的题目如下:
卡特兰数又称卡塔兰数,卡特兰数是组合数学中一个常出现在各种计数问题中的数列。个人觉得和斐波那契数列差不多,卡特兰数的地推公式为:pre(n) = pre(0) * pre(n-1) + pre(1) * pre(n-2) + ... + pre(n-1) * pre(0) (n>=2),pre[0] = pre[1] = 1;
一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” )。
版权声明:本文为博主原创文章,转载请注明博客地址: https://blog.csdn.net/zy010101/article/details/81660712
动态规划(DP,Dynamic programming)是一种通过把原问题分解为相对简单的子问题的方式求解复杂问题的方法。动态规划常常适用于有重叠子问题和最优子结构性质的问题,动态规划方法所耗时间往往远少于朴素解法。给定一个问题,如果可以将其划分为子问题,并解出其子问题,再根据子问题的解推导/递推以得出原问题的解。
如果对动态规划解题思路以及步骤和如何推导转移方程还不清楚的同学可以去看一下我前面发的一篇DP大总结希望能够帮到你:数据结构与算法—算法篇之动态规划(一)
递推法是一种重要的数学方法,在数学的各个领域中都有广泛的运用,也是计算机用于数值计算的一个重要算法。这种算法特点是:一个问题的求解需一系列的计算,在已知条件和所求问题之间总存在着某种相互联系的关系,在计算时,如果可以找到前后过程之间的数量关系(即递推式),那么,从问题出发逐步推到已知条件,此种方法叫逆推。无论顺推还是逆推,其关键是要找到递推式。这种处理问题的方法能使复杂运算化为若干步重复的简单运算,充分发挥出计算机擅长于重复处理的特点。 递推算法的首要问题是得到相邻的数据项间的关系(即递推关系)。递推算法避开了求通项公式的麻烦,把一个复杂的问题的求解,分解成了连续的若干步简单运算。一般说来,可以将递推算法看成是一种特殊的迭代算法。 例题1——数字三角形
动态规划适用于有重叠子问题和最优子结构性质的问题。给定一个问题,如果可以将其划分为子问题,并解出其子问题,再根据子问题的解推导/递推以得出原问题的解。LeetCode上关于动态规划的题目众多,除了前述文章的最小路径、股票买卖等问题,区间型动态规划也是一类经典题目。本节将分析LeetCode上两道区间型动态规划题目。
上篇文章中,我们给出一道北大强基考试中的试题,计算[((1 + sqrt(5)) / 2) ^ 12],给出了一条没有任何数学直觉,纯硬算的弯路以及题目的参考答案,相关内容请戳:
斐波那契数列(Fibonacci Sequence)是一组自然数序列,其特点是每个数都是前两个数之和。斐波那契数列的起始数字通常为0和1,序列依次为0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ...。
动态规划过程是:每次决策依赖于当前状态,又随即引起状态的转移。一个决策序列就是在变化的状态中产生出来的,所以,这样的多阶段最优化决策解决这个问题的过程就称为动态规划。
构造备忘录P[i,c],P[i,c]表示在前i个商品中选择,背包容量为c时的最优解
在JavaScript程序中,函数直接或间接调用自己。通过某个条件判断跳出结构,有了跳出才有结果。
大家好,我是架构君,一个会写代码吟诗的架构师。今天说一说递归函数及例题_递归树求解递归式例题,希望能够帮助大家进步!!!
动态规划过程是:每次决策依赖于当前状态,又随即引起状态的转移。一个决策序列就是在变化的状态中产生出来的,所以,这种多阶段最优化决策解决问题的过程就称为动态规划。
题目: Given a string s and a dictionary of words dict, determine if s can be segmented into a space-separated sequence of one or more dictionary words.
数字是我们在编程中最常接触的元数据。无论是在业务还是刷题,多半部分都是数字的运算,其次是字符串,再次是布尔。
要说吧,4道题也都做出来了,耗时老实说也没有特别长,不算错误惩罚的话其实也就56分钟,不到1个小时,整体虽然没有挤进国内前100,好歹也有前4%(116/3682),世界排名也是311/9290,也属于前4%,照说应该是一次不错的发挥了。
一般情况下,算法中基本操作重复的次数就是问题规模n的某个函数f(n),进而分析f(n)随n的变化情况并确定T(n)的数量级。这里用‘o’来表示数量级,给出算法时间复杂度。 T(n)=o(f(n)); 它表示随问题规模n的增大,算法的执行时间增长率和f(n)增长率成正比,这称作算法的渐进时间复杂度。而我们一般情况下讨论的最坏的时间复杂度。 空间复杂度: 算法的空间复杂度并不是实际占用的空间,而是计算整个算法空间辅助空间单元的个数,与问题的规模没有关系。算法的空间复杂度S(n)定义为该算法所耗费空间的数量级。 S(n)=o(f(n)) 若算法执行所需要的辅助空间相对于输入数据n而言是一个常数,则称这个算法空间复杂度辅助空间为o(1); 递归算法空间复杂度:递归深度n*每次递归所要的辅助空间,如果每次递归所需要的辅助空间为常数,则递归空间复杂度o(n)。
此处F(n)是最高为t次的多项式和一个指数函数的乘积。我们要求解这个通式,如线性代数中一样,先解齐次方程,由解的结构,再加上特解即为所求的解。
本文介绍了归并排序的基本思想,递归方法的一般写法,最后一步步手写归并排序,并对其性能进行了分析。
简单来记,20世纪50年代美国数学家理查德·贝尔曼发明的,用于数学领域解决某类最优问题的重要工具,以及在计算机领域当作是一种通用的算法设计技术。其余历史可以参考麻省理工教材动态规划第一篇。
题目描述 有一个n+2个元素a[0], a[1], ..., a[n+1] (n <= 3000, -1000 <= a[i] <=1000)构成的数列. 已知对i=1, 2, ..., n有a[i] = (a[i-1] + a[i+1])/2 - c[i]. 给定a0, a[n+1], c[1], ... , c[n]. 写一个程序计算a[1]. 输入 第一行是整数n. 接下来两行是a[0]和a[n+1], 其小数点后有两位数字. 其后的n行为c[i](同样是两位小数), 每行一个数. 输出 输出为
博弈论是有趣又有用的知识,可以用来预测在特定的规则下,人们会做出怎样的行为,又会导致怎样的结果。利用博弈论来指导人们的行事法则甚至商业操作,比如著名的囚徒困境就被很好的利用在了商业竞争上。同样,LeetCode也利用博弈论出了几道有意思的题目。
本文介绍了隐马尔可夫模型,首先介绍了隐马尔科夫模型定义,核心思想是引入了隐状态序列(引入隐状态是所有隐因子模型最巧妙的地方,如:隐因子分解,LDA),然后介绍了隐马尔科夫模型要解决的三个问题,1)在参数已知的情况下计算可观测序列的总概率,2)在给出观测序列数据时学习模型的参数,3)在参数已知的情况下通过维特比解码预测出所有产生可观测序列中概率最大的一条不可观测序列,即序列标注问题。
时,处于原地,因为步长为 1 ~ 2 阶,不能有前进之后再后退的情况,所以只能有当前一种方式,所以
给定一个仅包含数字 2-9 的字符串,返回所有它能表示的字母组合。给出数字到字母的映射如下(与电话按键相同)。注意 1 不对应任何字母。
dynamic programming被认为是一种与递归相反的技术,递归是从顶部开始分解,通过解决掉所有分解出的问题来解决整个问题,而动态规划是从问题底部开始,解决了小问题后合并为整体的解决方案,从而解决掉整个问题。
设表示层楼总共不同的方式。 假设此时位于第层,因为每次只能爬1层或2层,所以到第层只有2种方式。
咦咦咦,各位小可爱,我是你们的好伙伴——bug菌,今天又来给大家普及Java SE相关知识点了,别躲起来啊,听我讲干货还不快点赞,赞多了我就有动力讲得更嗨啦!所以呀,养成先点赞后阅读的好习惯,别被干货淹没了哦~
上回我们针对这道北大强基题[((1 + sqrt(5)) / 2) ^ 12]在答案的基础上给出了出题的可能思路,想一探究竟,相关内容请戳:
Floyd-Warshall 算法使用动态规划策略计算图中每两个顶点间的最短路径,算法中通过调整路径中经过的中间顶点来缩小路径权值,最终得到每对顶点间的最短路径。
有n个物品,它们有各自的体积和价值,现有给定容量的背包,如何让背包里装入的物品具有最大的价值总和?
前面三篇文章已经为大家介绍了利用动态规划算法解决问题的思路以及相关的代码实现,最为核心的就是第一步利用数学中函数的思想来建立模型,然后求解问题。这三个问题构建的数学函数都有一个共同的特征就是所构建的函数都是一元函数即y = f(x)。
感谢山东工商学院学院厉玉蓉老师提供的完美数学推导,我在重写和整理时略加修改,比如变量替换时她喜欢用字母z,而我喜欢用x,哈哈。当然,还有另外几个小地方^_^ 本文从Fibonacci数列第n项的通项公
领取专属 10元无门槛券
手把手带您无忧上云