任何的学习都是一个体系化的循序渐进的过程,要有一个学习地图和学习路径图,不同阶段的学员对于不同阶段的学习内容,结合不同的形式和路径,在一定的周期内完成学习内容,最终提升某项技能。在人力资源的人才发展TD的模块中,我们会为各个岗位设计不同的学习路径图,在人力资源数据分析的学过程中我们也为大家设计了 数据分析的学习路径图,帮助大家更加系统的体系化的来学习人力资源数据分析技能。
人力资源的数据分析是一个系统化的学习过程,除了需要掌握基础数据分析知识外,还需要掌握EXCEL的技能和人力资源的专业能力,为了帮助大家更好的学习数据分析,我帮大家梳理了一下学习的知识,需要学习哪些内容,如何循序渐进的来学习数据分析。
随着这几年大数据应用的兴起,很多企业开始意识到了数据分析对于行业和企业的重要性,零售、电商、制造业等行业大规模的进行大数据的转型和分析。零售行业通过用户的购买数据分析,进行精准的产品推送和产品结构的调整,做到销售的精准化。制造业提出了工业4.0的概念,通过对整体制造过程的数据采集,呈现,分析,以仪表盘数据的形式来监控整体的制造的进行,从而可以更加高效的进行产品的生产。
人力资源数据化转型和数据分析是一个系统化的学习过程,不管是人力资源部门的数据转型还是HR个人的数据转型,我觉得都是一个数据化的落地的过程,你需要具备数据分析的思维,数据分析的技能,对于现阶段的HR来说,不要值着眼各种战略,系统,组织这种高高在上的内容,你更应该关注数据化如何的落地。
👆点击“博文视点Broadview”,获取更多书讯 互联网时代,都说得数据者得天下。 企业需要通过数据分析得出的结论做出正确的决策,确保业务精准符合用户市场需求,数据分析师这个岗位也得到了越来越多求职者的青睐。 本期就为大家分享14本数据分析类图书,让你轻松掌握数据分析的三板斧:Excel、SQL、Python,打好理论知识(统计学、机器学习)的基础。 即使你是零基础的小白,也能够轻松入门,并逐步进阶,找到自己喜欢的工作。 ---- 01 ▊《深入浅出数据分析》 Michael Milton 著
基础知识包含数学、线性代数、统计学等,这些也是决定数据分析职业发展高度的基石。对于初学者,学习描述统计相关的内容和公式即可,再进一步就需要掌握统计算法,甚至是机器学习算法。对于算法相关的工作,则要对高数进行深入学习。
1、来源 有哪些你看了以后大呼过瘾的数据分析书? https://www.zhihu.com/question/60241622 做数据分析不得不看的书有哪些? https://www.zhihu.com/question/19640095 2、采集回答 3、清洗:去除空行、去重 4、统计分析 5、两个帖子中都有回答的作者,考虑大V、书商、利益相关者 作者 计数 大数据峰哥 3 Bottle 2 DataCastle数据城堡 2 DataHunter 2 George Li 2 GrowingIO 2
又到了周一AI的话题,上周聊了AI对数分冲击的一个侧面,今天从另一个方面来聊聊AI是如何提升数分狗的学习效率的~
它是日常工作中最常用的工具,如果不考虑性能和数据量,它可以应付绝大部分分析工作。虽然现在机器学习满地走,Excel依旧是无可争议的第一工具。
大数据时代到来,如何从数据中提取、挖掘对业务发展有价值的、潜在的知识,为决策层的提供有力依据,为产品或服务发展方向起到积极作用,有力推动企业管理的精益化,对于每个企业都意义重大,而这些工作,大多需要数据分析师才能完成,但如何才能成为一个合格的数据分析师呢? 我这里提四个方面,如果你是一个新手,想从事数据分析师这个职业,那么,你可以看看,当然如果你是个分析老鸟,在苦恼如何更进一步,也可以看下,可能于你也有益哦,数据分析师学无止境,总在痛并快乐着。 Part 1 数据分析师的基本素质 数据分析师最需要的基本素
数据分析和数据挖掘是数据从业者非常关注的两个岗位。这两个岗位到底有哪些区别?常听人说数据分析偏业务、偏前台,而数据挖掘偏技术,偏后台。所以要早点选定一个方向进行深耕才行?
千呼万唤,数据分析系列教程终于要来了,错过了爬虫的朋友,但这次就不要错过数据分析,今年只有三个月时间了,我希望今年过完每个人都能用数据分析搞事情!
无论我们身处哪个行业,做什么样的工作,学会数据分析无疑都能够指导我们更有针对性地解决问题,帮助我们做出更有说服力的决策。 博文菌曾经赶时髦地学习怎样使用爬虫软件去爬取一些数据,却不知道爬取到的数据要如何利用,想要进行数据分析,却不知从何入手。 直到博文菌看了一套书,才知道如何遵循正确的步骤进行数据分析,如何基于自己的分析目的利用各类分析方法和工具得出自己想要的答案。 这是哪套书呢?它就是在数据分析圈赫赫有名的“菜鸟”丛书! 上市之初便荣中国书刊发行业协会颁发的“全行业优秀畅销书品种”称号! 受到沈浩教授、张
经常有网友会对数据分析方面有一些困惑,并且咨询我该怎么办?并且经常是同样的问题,所以觉得有必要对一些经典共性的问题进行整理,与大家分享,这里并非标准答案,仅作参考! 欢迎提出自己对数据方面的疑问,将在
毕业后我去了一家世界500强企业,从事的是搭建手机通信芯片里面一个小电路的工作。干了一年半,在转行的念头中挣扎了半年,然后裸辞回家,思考人生。
数据分析(Data Analysis)往往又称数据科学 (Data Science),其目标是在数据中找到有价值的规律或特征,是一门利用数据学习的科学。它结合了各种不同的领域,如数学、统计、机器学习、数据可视化、数据库、云计算等。非专业人士能够利用数据分析来理解问题,通过数据的解读与分析来正确地处理数据。数据分析能够用于不同的领域,如教育、金融或商业。
该课程是国内第一门,空间数据分析课程,课程将在2021年5月8日正式开课,大家可以通过中国大学MOOC平台上线学习。该课程由武汉大学秦昆教授,联合人群活动时空分析专家方志祥教授、三建建模与可视化分析专家熊汉江教授、夜光遥感分析专家李熙副教授、空间相关性分析专家陈江平副教授、地理加权回归分析专家卢宾宾副教授联袂推出,欢迎感兴趣的学生、专家学者登录课程平台进行学习!
大家好,今天我要和大家分享的是如何快速入门并高效学习Python数据分析。在这个过程中,我们要学会避免一个常见的陷阱——过度沉迷于细节的学习。下面是我的一些建议和心得,希望能帮助到大家。
如今,数据分析师是一个很热门的职业,薪资水平较其他职位普遍偏高。很多人也因为高薪和发展,纷纷转向数据分析师。本文我们将从企业内部数据分析架构和数据分析学习两方面来了解数据分析师是如何成长的? 一、企业内部数据分析架构 1.商业数据分析中心的组织架构形式 目前国内商业数据分析中心的架构形式大致分四种,技术型,虚拟型、战略性和分散型。 2.商业数据分析中心岗位角色 业务统计分析人员:理解企业数据,发现业务问题,开发预测模型,帮助企业更好地进行信息决策; 数据挖掘人员:知识发掘积累,需要熟悉各种数据挖掘算
广泛被应用的数据分析:谷歌的数据分析可以预测一个地区即将爆发的流感,从而进行针对性的预防;淘宝可以根据你浏览和消费的数据进行分析,为你精准推荐商品;口碑极好的网易云音乐,通过其相似性算法,为不同的人量身定制每日歌单……
以上是一位资深的数据分析师写的自嘲的段子,却是很多分析师的真实写照。在耀眼的职业光环下,数据分析师自身的成长,几乎是与孤寂相伴,在高级打杂中,锻造而成。
大数据时代,大数据分析行业水涨船高,很多身边的朋友都想学习一下如何进行大数据分析。经常有人问我该怎么选择大数据分析工具。也对,面对市面上那么多大数据分析工具,大家在选择的时候都会懵一下。
大数据催生数据分析师 薪酬比同等级职位高20% 随着大数据在国内的发展,大数据相关人才却出现了供不应求的状况,大数据分析师更是被媒体称为“未来最具发展潜力的职业之一”。大数据分析师是做什么的?阿里巴巴集团研究员薛贵荣就曾表示,“大数据分析师就是一群玩数据的人,玩出数据的商业价值,让数据变成生产力。”而大数据和传统数据的最大区别在于,它是在线的、实时的、规模海量且形式不规整,无章法可循,因此“会玩”这些数据的人就很重要。有媒体报道,在美国,大数据分析师平均每年薪酬高达17.5万美元,而国内顶尖互联
因为大数据爆发,因此出现了大数据开发、大数据分析这两大主流的工作方向,目前这两个方向是很热门,不少人已经在开始转型往这两个方向发展,相较而言,转向大数据分析的人才更多一点,而同时也有不少人在观望中,这边科多大数据收集了十个为什么要学习大数据分析的十个理由。
机器学习,数据科学和数据分析是未来的发展方向。机器学习,数据科学和数据分析不能完全分开,因为它们起源于相同的概念,但刚刚应用得不同。它们都是相互配合的,你也很容易在它们之间找到重叠。
经常有网友会对数据分析方面有一些困惑,并且咨询我该怎么办?并且经常是同样的问题,所以觉得有必要对一些经典共性的问题进行整理,与大家分享,这里并非标准答案,仅作参考! 欢迎提出自己对数据方面的疑问,将在此篇将持续更新,敬请关注。 -------------------我不是完美的分割线----------------- Q1:大数据是什么? ---- 答:从海量的数据里进行撷取、管理、处理、并整理之后,获得你需要的资讯。大数据的特征归纳为4个“V”(量Volume,多样Variety,价值Valu
众所周知,精通Excel不叫精通数据分析,会讲述啤酒与尿不湿的案例并不代表你能洞悉数据,PPT做得漂亮也并不能为你的数据分析能力加分……我们做数据分析是为了能以量化的方式来分析业务问题,并得出结论。其中有两个重点词语:量化和业务。
如果你是一个对编程毫无经验的小白,那么首先你应该掌握一定的编程基础(尤其像从其它行业转行到IT行业的朋友们)。对于新手来说,博主认为Python语言是最佳的选择。作为一个解释型的动态高级语言,Python易于理解,上手简单,非常适合初学者学习。一本快速入门Python语言的书籍推荐:简明Python。这本书英文原版为《A Byte of Python》,经翻译变为《简明Python》。博主也给好多人推荐过,大家看过之后基本上都很认同,是入门Python最快效果最好的书籍。
书不在多,而在于精。下面从数据分析招聘要求的必须技能:统计学,Excel,SQL,业务知识,Python这5个部分来详细聊聊每一步如何去学习和看哪些书
有读者问我,看到现在大厂都在招数据分析师,薪资也非常有吸引力,我会用 SQL 和 Excel,还会一点 Python,能不能去应聘?
2014年,“大数据” 成为国内年度热词,并首次出现在当年的《政府工作报告中》。同年,数据分析也同样成为朝阳行业,数据分析一度霸屏各招聘网站。
适合对数据分析的入门者,对数据分析没有整体概念的人,常见于应届毕业生,经验尚浅的转行者。
导读:在耀眼的职业光环下,数据分析师自身的成长,几乎是与孤寂相伴,在高级打杂中,锻造而成。本文是一位资深数据分析师对数据分析感兴趣的新人 Y一些建议,尽管不全面,但或许能够给新人一些借鉴。如有不妥地方,请各位数据大牛轻拍。 一、数据分析师有哪些要求? 1、理论要求及对数字的敏感性,包括统计知识、市场研究、模型原理等。 2、工具使用,包括挖掘工具、数据库、常用办公软件(excel、PPT、word、脑图)等。 3、业务理解能力和对商业的敏感性。对商业及产品要有深刻的理解,因为数据分析的出发点就是要解决商业的
原文地址:How to Learn Python for Data Science the Right Way
大数据因为其背后蕴含的价值,被《经济学杂志》在2017年誉为“新的石油”,数据导向的工作也成为很多人的向往之一,特别是数据分析。
私以为,数据分析行业是可以长期发展下去的,但是对于数据分析师的专业技能的要求会越来越严格。
Smart is the new sexy. 酷炫的图表,理性的分析阐述,出其不意又在情理之中的思考角度,总让人对这群“用数据讲故事的人”充满了向往。
在大数据和人工智能行业,有众多与数据相关的岗位,名目繁多:数据分析师、数据产品经理、数据挖掘工程师、大数据工程师、数据开发工程师、机器学习工程师、算法工程师、NLP算法工程师、数据科学家等等。很多应届生或准备转行的朋友面对如此多的岗位名称,都会傻傻分不清楚。本文将这些数据相关的职位分为三类:数据分析师、大数据工程师和算法工程师,并从工作内容和技能要求来做一下分析,帮助新入行朋友选择适合自己的岗位。这里我暂且不谈最顶级的数据科学家,这部分人均为名校博士,全世界可能只有几千个,他们可以轻轻松松年薪百万,是整个食物链的最顶层。他们不需要找工作,都是工作在找他们。
之前在公众号提过,我写了一本书,现在这本书终于面世了,这本书就是『对比Excel,轻松学习Python数据分析』,这本书是写什么的,以及这本书怎么写的,相信大家通过书名就能了解一二,但还是有必要专门写一篇文章来详细介绍一下。
来自数据的力量 您好,喜欢数据分析的初学者: 十年生死两茫茫 数据人,忙忙忙 良辰美景,平添我凄凉 一天早晚闲不住 调研急 报告狂 夜来思路忽闪现 寻笔记 怕遗忘 需求多变 改改又何妨 料得午夜加班时 听家人 鼾声响 以上是一位资深的数据分析师写的自嘲的段子,却是很多分析师的真实写照。在耀眼的职业光环下,数据分析师自身的成长,几乎是与孤寂相伴,在高级打杂中,锻造而成。 最近接到一个职业访谈的邀请,要给对数据分析感兴趣的新人Y(目前在知名电商从事系统开发和维护)一些建议,才突然发现自己在这个领域打滚了一段时间
而基于这些数据的分析,可以挖掘到非常多有价值的信息,这些信息正在成为大多数企业业务增长、迭代更新的关键。
TA说:之前我在回答里写过,数据分析师和圣骑士职业很相似,都需要“门门通”。最近,我尝试对数据分析师的能力和工具体系进行梳理,以下内容为一家之言,仅供参考。
数据分析在现代决策过程中扮演着至关重要的角色。无论是企业管理、市场营销,还是科学研究,数据分析都为我们提供了洞察和方向,帮助我们在复杂多变的环境中做出明智的决策。然而,随着数据量的不断增长和分析工具的日益复杂,数据分析师面临的挑战也日益增多。在这种背景下,自省变得尤为重要。定期自省不仅有助于提升个人技能,还能确保分析工作的准确性和有效性。那么,为什么数据分析师需要定期自省?自省又能带来哪些具体的好处呢?
大家还记得那本狂销20多万册,横扫各大畅销榜单的“对比Excel”系列图书吗? 是的,它又出姊妹篇啦! 统计是大数据的三大基础学科之一,换句话讲统计学是数据分析的理论支撑!一切用数据说话,避免之前的“一拍脑袋决定,二拍胸脯保证,三拍屁股走人”的主观误判。 但对于刚入门的数据分析师来说,晦涩难懂的公式,庞杂的知识点,深奥的统计理论,不禁让人头脑发胀。这种时候,尤其是对新手来说,学什么?怎么学?却变得尤为重要。 这本适合新手的统计学小书,从“面试常考”的角度帮你划定了统计学重点! 01 入行新手学什么?业务
本文作者为数据海洋,海洋老师从一个数据分析师成长为管理过近百人的数据团队的负责人,这中间总结了不少经验,也踩了不少坑,现在他把这些分享出来,希望可以帮助到大家。总共有三篇,本篇为第一篇,主要写了数据分析师的入门需要的基本的知识,逻辑,工作方法。
摘要总结:本文主要介绍了数据分析和数据挖掘的区别与联系,从定义、目的、方法、结果等方面进行了详细阐述。数据分析包括广义和狭义的数据分析,数据挖掘则是一种广义的数据分析方法。两者在数据分析的过程中互为补充,共同构成了广义的数据分析。
你的书架,由我承包 上次的回血送书活动大家热情十分高涨哇! 宠粉狂魔——博文菌决定要把这个活动长期搞下去 本次主题【数据分析】,活动清单可不止有书哦 本次内容包括 8本新上市的热销好书以及2门爆款视频课 下面是详情介绍,参与方式可直接拉至文末哦~ 当当网图书暑期阅读季开始啦,博文菌为你送上一份【实付满200减50】的优惠码,可以和当前的【每满100减50】活动叠加使用!遇到喜欢的书放肆地入手吧! 具体怎么用 步骤一,进入当当APP 步骤二,挑选心仪的图书至购物车点击结算 步骤三,点击优惠券/码处
广泛被应用的数据分析 谷歌的数据分析可以预测一个地区即将爆发的流感,从而进行针对性的预防;淘宝可以根据你浏览和消费的数据进行分析,为你精准推荐商品;口碑极好的网易云音乐,通过其相似性算法,为不同的人量身定制每日歌单…… 数据正在变得越来越常见,小到我们每个人的社交网络、消费信息、运动轨迹……,大到企业的销售、运营数据,产品的生产数据,交通网络数据…… 如何从海量数据中获得别人看不见的知识,如何利用数据来武装营销工作、优化产品、用户调研、支撑决策,数据分析可以将数据的价值最大化。 数据分析人才热度也是高居
“一切都被记录,一切都被分析”就了一个信息爆炸的时代,人类过去两年产生的数据占据了整个人类文明中所产生的数据的90%。而在这些无限丰富的数据中,蕴藏着巨大的价值,数据分析在数据爆炸式增长的前提下变得炙手可热,数据分析师甚至被称为“性感的职业”。由于需求的迫切增加和人才的短缺,数据人才显得弥足珍贵,数据分析师由此披上了华丽的光环。那么对于并非科班出身的人来说,如何通过自己的学习入门并成为厉害的数据分析师呢?下面是一份比较基础的书单,但也可以说是一个相对完整的入门学习体系。
领取专属 10元无门槛券
手把手带您无忧上云