大家还记得那本狂销20多万册,横扫各大畅销榜单的“对比Excel”系列图书吗? 是的,它又出姊妹篇啦! 统计是大数据的三大基础学科之一,换句话讲统计学是数据分析的理论支撑!一切用数据说话,避免之前的“一拍脑袋决定,二拍胸脯保证,三拍屁股走人”的主观误判。 但对于刚入门的数据分析师来说,晦涩难懂的公式,庞杂的知识点,深奥的统计理论,不禁让人头脑发胀。这种时候,尤其是对新手来说,学什么?怎么学?却变得尤为重要。 这本适合新手的统计学小书,从“面试常考”的角度帮你划定了统计学重点! 01 入行新手学什么?业务
书不在多,而在于精。下面从数据分析招聘要求的必须技能:统计学,Excel,SQL,业务知识,Python这5个部分来详细聊聊每一步如何去学习和看哪些书
1、来源 有哪些你看了以后大呼过瘾的数据分析书? https://www.zhihu.com/question/60241622 做数据分析不得不看的书有哪些? https://www.zhihu.com/question/19640095 2、采集回答 3、清洗:去除空行、去重 4、统计分析 5、两个帖子中都有回答的作者,考虑大V、书商、利益相关者 作者 计数 大数据峰哥 3 Bottle 2 DataCastle数据城堡 2 DataHunter 2 George Li 2 GrowingIO 2
“数据分析”是一个含义颇为宽泛的概念,并且,在这个数据化的时代,这个概念几乎是无处不在的。为了保证内容的有效性,在这里仅提供我了解的一些方面。 我接触的数据分析,主要是围绕互联网产品展开的。从数据采集前的规划,到采集过程(交互逻辑设计等),到回收数据的整理(机器层面和人工层面),与业务相联系的数据汇总,到后期的报告呈现(项目成果呈现),都有“数据分析”涉及。 对单一产品来讲,数据分析(非挖掘)的集中体现,往往在运营层面。一方面是日常数据的跟踪,另一方面是重大活动、市场策略、新版本上市时的数据监测。
10月26日,CDA数据分析师董事长赵坚毅访问社科大,并与中国社会科学院大学经济学院签署战略合作框架协议。社科大经济学院执行院长何辉、党委书记钟德寿出席仪式。双方将充分发挥各自优势,共同探索产学研合作新模式,树立校企合作发展新标杆,推动双方新一轮共同发展。
原文地址:How to Learn Python for Data Science the Right Way
数据分析最近很多朋友问我,怎么样才能成为一名数据分析师呢,我没有基础,能不能做数据分析师呢? 正常智力的人,想要从菜鸟成为一名数据分析师,都是可行的,只不过,数字敏感度好的人,成长更快,那是不是说明,我们就不需要花时间学习数据分析的技能了呢,我之所以把数据分析称之为技能,而不是职能。 是因为,现在我们所处的阶段就是工业化转型信息化的时代,美国天生就是一个大数据国家,现在仍然有19万数据分析师的缺口,目测2016年,国内会有10万左右数据分析师的缺口,即使你是财务、运营、产品,数据分析都是你必备的一种技能
近几年美国公布的相关数据分析中,薪酬最高、最吃香的行业中便有IT业。IT产业日益崛起,技术也被越来越多的人掌握,而往往最被看重的技能是:数据分析、风险管理、机器人技术、信息安全、网络技术。数据分析排名
大数据时代到来,如何从数据中提取、挖掘对业务发展有价值的、潜在的知识,为决策层的提供有力依据,为产品或服务发展方向起到积极作用,有力推动企业管理的精益化,对于每个企业都意义重大,而这些工作,大多需要数据分析师才能完成,但如何才能成为一个合格的数据分析师呢? 我这里提四个方面,如果你是一个新手,想从事数据分析师这个职业,那么,你可以看看,当然如果你是个分析老鸟,在苦恼如何更进一步,也可以看下,可能于你也有益哦,数据分析师学无止境,总在痛并快乐着。 Part 1 数据分析师的基本素质 数据分析师最需要的基本素
大家好,我是ZZ,欢迎大家来到我的公众号:人人都是数据分析师。之所以起这个名字是因为在我看来,数据分析不仅仅是一个职位或者专业,而且是互联网时代一个人人必备的基本技能。
2018年4月28日,教育部高等教育司发函〔2018〕18号《教育部高等教育司关于公布有关企业支持的产学合作协同育人项目申报指南(2018年第一批)的函》。
数据分析就是用合适的方法来发挥出数据的最大价值,这是一门结合了统计学,高等数学,工程学,商业决策等知识的技能,其中高等数学,工程学和统计学这些都是硬技能,而商业决策是属于软技能,数据分析师就是具备这些技能的岗位。数据分析师也有所侧重点,有的人是商业出身,偏向于商业领域,有的人是统计学出身,偏向于统计领域,有的人是工程学出身,更偏向于it领域。企业在进行招聘的时候,他们会根据自己的需求选择合适的数据分析师。
春节回家,看到朋友晒的年终奖,我羡慕不已。 他入职腾讯一年半,拿了3个月工资作为年终奖。据他所说,这还不算什么,网易《哈利波特·魔法觉醒》项目组,所有员工奖励888888元…… 虽然说并不是每个大厂员工都可拿到百万年终奖,但平均下来也有3-6个月的奖金(真香)。 相信很大一部分人想要趁着金三银四跳槽去大厂,那么数据分析、产品、运营人想进大厂,应该做哪些准备呢? 为此,我特意研究了各大招聘网站将近百份招聘需求,发现几乎所有的中、高阶产品、运营和市场岗位,都对数据分析能力非常重视。 由此可见,数据分析能力已经
2014年,“大数据” 成为国内年度热词,并首次出现在当年的《政府工作报告中》。同年,数据分析也同样成为朝阳行业,数据分析一度霸屏各招聘网站。
本章的目的是为读者提供理解基因组学所需的一些基础知识。需要说明,这绝不是对这一学科的完整概述,而只是一个简单的总结,它将帮助非生物学相关专业的读者理解计算基因组学中反复出现的生物学概念。熟知基因组生物学和全基因组定量分析的读者可以自由跳过这一章或大致浏览一遍。
金三银四跳槽季,什么岗位最吃香? 看看字节、腾讯等大厂给自家数据分析师开出的薪资,你就知道这个岗位有多火热了。 数据分析师的薪酬这么高,真的是因为做数据分析很难吗? 当然不是! 相较于写代码,数据分析所师需的技能门槛要低得多,甚至你只需要精通几个分析工具,就能拿到大厂offer。 比如别人做个可视化图表憋半天,而你用Tableau几分钟搞定;别人分析网站数据,分析半天结果未必准确,而你用Python迅速地出具一份专业报告;别人几个小时没查询完的数据,你用SQL几秒钟执行完毕。 这就是你的职场竞争力。 分
如果你打开招聘的职位要求,都会要求具有统计学的知识,这是因为统计学是数据分析、机器学习的基础知识,是必须要学习的。
前几天在知乎上,回答了问题:「如何深入学习数据分析?」,没想到竟然成了优秀回答。感谢知友们的喜欢。
五一跟朋友出去玩,听他晒自己Q1绩效,我羡慕不已。 他入职腾讯一年半,上个月就拿了3倍工资作为绩效奖励。据他所说,这都是小意思,其他大厂还有更高的...... 相信不少打工人都有一个大厂梦,可是数据分析、产品、运营人想进大厂,应该有哪些准备呢? 为此,我特意研究了各大招聘网站将近百份招聘需求,发现几乎所有的中、高阶产品、运营和市场岗位,都对数据分析能力非常重视。 由此可见,数据分析能力已经成为职场人的刚需。 但是一提数据分析,90%以上的互联网人都觉得无从下手。知识点零散、学习起来毫无头绪,有的人花了很多
最近数据分析真的很火,很多人想学,在大数据这个概念的催生下,数据分析俨然成为了职场的必备技能之一,而很多教育培训机构或者个人也非常会抓住商机,在普遍焦虑的情况下,推出了非常多的数据分析课程,从互联网数据分析、电商数据分析到零售数据分析,从数据抓取、数据分析、数据挖掘到数据可视化,可谓百花齐放。
“大数据”时代,数据分析岗位需求逐步增多,薪资也从最初的月薪1W到月薪5W。 不过从招聘网站上可以看出,高薪行业对数据分析能力要求也越来越严格,尤其是字节、阿里等大厂。 15 年,会用个 Excel,会查数据库就能找到很好的工作; 17 年,你得会做BI可视化,能给老板做漂亮的动态报表,同时还得精通Python; 到了 2022 年的今天,除了 Excel 、 Python 、 BI 这些基础的工具,你还要懂统计、建模、数据分析、业务增长等…… 为此,我从网站上搜了不少学习资料和视频,但看完只能
1. 认为学会 Python 就可以掌握数据分析技能,大错特错,Python 只是数据分析师使用的工具之一,从商业 sense 到分析还有很多工具要掌握。
导读:这个年代里,“用数据说话”已经像是一种过气的口号。各行各业不同角色和身份的人们都已懂得“用数据说话”的重要性,甚至日常生活中也需要用数据看清事实,科学吃瓜。所以,当前的重点已经超越了“用数据说话”,而是“怎样用数据说话”。
它是日常工作中最常用的工具,如果不考虑性能和数据量,它可以应付绝大部分分析工作。虽然现在机器学习满地走,Excel依旧是无可争议的第一工具。
在统计分析领域中,EViews软件是一款被广泛使用的统计分析软件之一。自从我开始使用EViews以来,我深深地感受到它的强大和易用性,让我在我的研究工作中受益匪浅。
优秀的数据分析师需要具备这样一些素质:有扎实的 SQL 基础,熟练使用 Excel,有统计学基础,至少掌握一门数据挖掘语言(R、SAS、Python、SPSS),有良好的沟通和表达能力,做好不断学习的准备,有较强的数据敏感度和逻辑思维能力,深入了解业务,有管理者思维,能站在管理者的角度考虑问题。
浅谈数据分析与数据挖掘? 数据分析和数据挖掘都可以做为“玩数据”的方法论,两者有很多的共性,也有显著的差异。 从分析的目的来看,数据分析一般是对历史数据进行统计学上的一些分析,数据挖掘更侧重于
春节回家,看到朋友晒的年终奖,我羡慕不已。 他入职腾讯一年半,拿了 3 个月工资作为年终奖。据他所说,这还不算什么,网易《哈利波特·魔法觉醒》项目组,所有员工奖励 888888 元…… 虽然说并不是每个大厂员工都可拿到百万年终奖,但平均下来也有 3-6 个月的奖金(真香)。 相信很大一部分人想要趁着金三银四跳槽去大厂,那么数据分析、产品、运营人想进大厂,应该做哪些准备呢? 为此,我特意研究了各大招聘网站将近百份招聘需求,发现几乎所有的中、高阶产品、运营和市场岗位,都对数据分析能力非常重视。 由此可见,数据
适合对数据分析的入门者,对数据分析没有整体概念的人,常见于应届毕业生,经验尚浅的转行者。
而基于这些数据的分析,可以挖掘到非常多有价值的信息,这些信息正在成为大多数企业业务增长、迭代更新的关键。
最近流传一句话,不会数据分析的程序员,不是好程序员。 其实,不仅仅程序员,无论你未来准备从事什么职业:产品、运营、销售、HR、财务、金融、电商,还是做研发、系统架构,你都会发现,在数不清的岗位需求中,公司对数据分析的能力要求越来越普遍! 有人说,毕业生学数据分析很占优势,因为学得快 有人说,毕业生没有工作经验是优势,可以直接上岗… 有人说,数据分析行业前景好,薪资高,是工作的好选择… 有人说,学数据分析永不过时… 但!数据分析到底是什么?离我们远吗 恰恰相反,数据正在变得越来越常见,小到我们每个人的社交网络、消费信息、运动轨迹,大到企业的销售、运营数据,产品的生产数据,再看看我们每天在做的事情,上知乎、上微博、逛淘宝,上Google,所有的地方都是高度需要数据分析 数据分析当然重要,一般单位还是用excel表格在统计数据 而数据分析,就是就是将数据的价值最大化 借助数据来做决策,而不是盲目地拍脑袋
千呼万唤,数据分析系列教程终于要来了,错过了爬虫的朋友,但这次就不要错过数据分析,今年只有三个月时间了,我希望今年过完每个人都能用数据分析搞事情!
新年伊始,很多同学都会想着:我要好好学习数据分析,今年做好工作/找个好工作。怎么学才能学好?这里推荐用KSA方法,理清目标,分解任务哦。啥?你说之前没听过?今天我们系统讲解下。
“一切都被记录,一切都被分析”就了一个信息爆炸的时代,人类过去两年产生的数据占据了整个人类文明中所产生的数据的90%。而在这些无限丰富的数据中,蕴藏着巨大的价值,数据分析在数据爆炸式增长的前提下变得炙手可热,数据分析师甚至被称为“性感的职业”。由于需求的迫切增加和人才的短缺,数据人才显得弥足珍贵,数据分析师由此披上了华丽的光环。那么对于并非科班出身的人来说,如何通过自己的学习入门并成为厉害的数据分析师呢?下面是一份比较基础的书单,但也可以说是一个相对完整的入门学习体系。
如果你是一个对编程毫无经验的小白,那么首先你应该掌握一定的编程基础(尤其像从其它行业转行到IT行业的朋友们)。对于新手来说,博主认为Python语言是最佳的选择。作为一个解释型的动态高级语言,Python易于理解,上手简单,非常适合初学者学习。一本快速入门Python语言的书籍推荐:简明Python。这本书英文原版为《A Byte of Python》,经翻译变为《简明Python》。博主也给好多人推荐过,大家看过之后基本上都很认同,是入门Python最快效果最好的书籍。
任何的学习都是一个体系化的循序渐进的过程,要有一个学习地图和学习路径图,不同阶段的学员对于不同阶段的学习内容,结合不同的形式和路径,在一定的周期内完成学习内容,最终提升某项技能。在人力资源的人才发展TD的模块中,我们会为各个岗位设计不同的学习路径图,在人力资源数据分析的学过程中我们也为大家设计了 数据分析的学习路径图,帮助大家更加系统的体系化的来学习人力资源数据分析技能。
对于任何一个将来要实际运用的技能,通过实战,自己亲自将一行行代码敲出来,然后达到自己想要的效果,这个过程是最好的学习方式。
前阵子,和同学吃饭聊到收入,他说“你们程序员的工资好!高!呀!” 事实上,也就是一份辛苦钱...... 干程序员,我要老板的钱,可老板想要我的命啊! 做运维的,平台问题立马得解决,724365不间断服务。天天对着服务器,连个说话的人都没有; 做测试的,项目稍有改动,就要重新测试。都说人工智能,测试就是负责“人工”这一块的; ...... 现在要说真正有“钱”途的岗位是什么?数据分析一定榜上有名。 任何一家公司都需要利用数据驱动业务的增长。尤其是在今年经济不景气,各行业增量减少的情况下,数据分析指
在当今信息时代,大数据已成为了无处不在的存在。从社交媒体上的点赞和分享,到在线购物的记录,再到传感器生成的海量数据,我们的世界充斥着各种各样的数据。这些数据的数量之大,以至于我们开始用“数据大爆炸”来形容这一现象。但这些数据不仅仅是数字的堆积,它们是有价值的资源,因为通过适当的大数据分析,我们可以从中提取出有意义的信息,这不仅改变了商业,也改变了我们的生活方式、医疗保健、科学研究等方方面面。
人力资源数据化转型和数据分析是一个系统化的学习过程,不管是人力资源部门的数据转型还是HR个人的数据转型,我觉得都是一个数据化的落地的过程,你需要具备数据分析的思维,数据分析的技能,对于现阶段的HR来说,不要值着眼各种战略,系统,组织这种高高在上的内容,你更应该关注数据化如何的落地。
Prism是GraphPad公司开发的生物统计和绘图软件,主要应用于科学研究、数据分析和结果解释。Prism软件具有易于使用、功能强大和高效率等优点,在医学、生物学、生态学等科学领域得到广泛应用。该软件不仅可以帮助用户完成数据分析和统计工作,还可以进行图形绘制、结果解释和报告编写等操作。
大数据行业在迅速的发展,几乎每天都会出现新的技术和方法。因此,想要跟上这个行业的步伐是有挑战性的。想要玩出数据的商业价值,让数据变成生产力,就需要读书了。俗话说:“读书如登山,每向上一步都又是一番风景,数据分析的成长之路也如登山一样,要想成为数据分析师,读书是必不可少的。
这几年,“数据分析”是很火啊,在这个数据驱动一切的时代,数据挖掘和数据分析就是这个时代的“淘金”,懂数据分析、拥有数据思维,往往成了大厂面试的加分项。
我羡慕那些从学校走出甚至还未走出的时候,就可以以自己学会的知识和技术来创造价值的人;而另外一些人,比如我,要再过很久才能找到自己的位置。已经开始读这篇文章的话,你与我很可能是同类。 大学期间,我基本算得上是个正牌的文科生。毕业之后,目光却逐渐转向数据分析,这个跨度颇有点不靠谱的意味。不过,在岗位上一段时间之后,我发现像我这样的人不在少数,只是他们可能在开始时距离“数据”没有那么远,例如传媒或者社会科学,但大家跨越自己原专业、进行新知识学习的程度是相似的。 既然如此,也一定会有后来人需要这些故事和鼓励,使他们
领取专属 10元无门槛券
手把手带您无忧上云