人力资源的数据分析过程是一个流程化,标准化的过程,对于HR来说,在数据分析的学习过程中,最关键的是要学习数据分析的思维,数据分析思维的最关键是数据分析的流程,以及在这个流程中的方法,工具。
经常看见各种数据分析师培训的运营推荐,那么数据分析师的就业行情究竟如何?让我们用数据说话,一探究竟!
很多人觉得数据分析是一个很高深的技能,要学会数据分析好像要会很多专业的软件,然后要和很多的数字打交道,要逻辑感非常强,其实数据分析没有大家想象的那么复杂,通过学习你也可以学会人力资源的数据分析。
这个层面追求数据的准确性,一般以静态的数据为主,主要操作是数据的录入和记录,是HR每天的基础的数据工作,比如 员工花名册,公司人员结构,每天招聘人员数据的记录,这些都是属于操作层面,对于这个层面的要求就是要准确,当老板问你公司有多少人,每个月入职多少人,离职多少人等这些静态数据的时候,你都可以准确的回答。
最近在优化人力资源招聘渠道模块数据的时候,想到了这个问题,数据的简洁与复杂,很多时候我们在做数据分析的时候有时候鉴于数据缺少,所以在做前期的原始数据的时候都做的比较的简洁,前期的数据简洁虽然在做数据分析的时候相对比较简单,但是对数据分析的精准性和预测性确影响比较大,因为在做数据分析的时候,数据越多,基数采样越多你后期的数据分析就分析的越精准,我们来看这一个案例:
SAS数据分析软件是一款基于Windows平台的商业数据分析软件,它能够实现从数据收集、处理、建模到结果展示的一整套数据分析流程。该软件的优越性能和数据安全性得到了广泛的认可和应用。这篇论文将探讨SAS数据分析软件的独特竞争力和使用方法,并使用实际案例进行说明。
数据分析的的最终呈现的形式是数据分析报告,我们通过数据的数透,数据的汇总,在通过数据的可视化数据仪表盘,然后对数据图表结合公司业务和发展进行分析,最终以PPT或者WPRD的形式进行数据报告的呈现,在这些工作中,对大家来说,可能做数据报告比较化时间,我无数次听很多HR的小伙伴在群里说秋季度年度数据分析报告的模板。你下载过来的模板几乎是没用的,因为每个公司的情况不一样,你肯定是需要进行修改个更新,但是如果你不懂数据分析报告的设计和一些EXCEL的数据技能,你就不能做出一个很好的数据报告。
最近在部门室内的交流会上,分享了一些撰写数据分析文章的心得,索性今天把这些心得体会以文字的形式记录下来,一方面当成是对数据分析工作的分享,另一方面作为个人成长记录,可能未来回头再看此文会觉得幼稚、粗浅。
现在数据分析能力在职场中越来越重要,尤其对运营人来说,数据分析就是运营人职场能力的分水岭,不管是做内容运营、产品运营还是活动、直播运营,数据分析基本上已经成了大厂招聘运营的标配:
随着大数据分析在行业里的应用,很多企业开始追寻企业内部数据化的转型,在企业内部数据化转型的同时,内部的各个部门都要追随企业的脚步进行转型,对于人力资源部门我们如何在部门内部进行数据化的转型和落地,这是现阶段很多HR面临的问题。
作为一名数据分析师,每天都在完成各种数据分析需求,其中数据清洗是必不可少的一个步骤。一般而言,当提及数据清洗时,其实是主要包括了缺失值处理、重复值处理和异常值处理三类操作,本文即围绕这这三个方面介绍一下个人的一些习惯操作。
近期在整理一些散落在各处的老文章发出来。懂数据系列内容是很早之前给公司非数据专业人员做的系列分享培训,共计四期内容,后面三期内容偏excel的实操展示和案例分析,不便于分享,只把第一讲的内容分享出来。
小B是一名数据分析师,他问小A XXX的所有指标给我一下,小A“鄙视的”给了他一个文档。
在产品矩阵业务中,通过仪表盘可以快速发现增长中遇到的问题。然而,如何快速洞悉问题背后的原因,是一个高频且复杂的数据分析诉求。
诸葛IO小科普 诸葛io,是一款基于用户洞察的精细化运营分析工具。由北京诸葛云游科技有限公司于2015年2月推出。诸葛io旨在以用户跟踪技术和简单易用的集成开发方法,帮助移动应用的运营者们挖掘用户的真实行为与属性、优化留存与活跃度、提升用户价值。目前,诸葛io支持Android、iOS和HTML(JS)三个平台。 因为一直在打磨诸葛io这款产品,所以也在研究如何更好的利用数据去驱动产品运营的决策。通过看了一些前辈的经验同时结合一些自己的思考,接下来我会用一系列文章去提出一些想法与大家分享,希望能够起到抛砖引
作为一款专业的统计分析软件,Minitab可以帮助用户快速高效地分析数据,得出有效结论。在我使用Minitab软件的过程中,我深刻体会到了它的优越性能和方便性。下面我将分享一些我个人的心得体会。
前言 为什么要分享一下数据分析方面的知识呢? 一是扩展下知识面 二是期望讨论下数据分析在测试领域的应用场景的可能性 从分享的情况来看,测试人员的思维依旧非常局限,同时大多的测试从业者的知识面是相当的狭窄。 数据分析的关键要点 准备 主要是读写各种各样的文件格式、数据库,获取原始数据集。 处理 主要对原始数据集进行清理、休整、整合、规划化、重塑、切片切换、变形等处理,生成可数据分析的数据集。 转换 对可分析数据集做数据做一些数学和统计运算生成新的数据集。例如分组分类、数据聚合等等。 建模和计算 将新的数据集跟
在人力资源的数据分析体系的构建中,我们最终的目的是要把人力资源各个模块的数据表进行数据的关联,然后通过关键指标来构建起一个体系化的数据模型,在进行人力资源的数据模型构建中,我们往往会忽略最重要的原始的数据标准表,今天我们就来聊聊在人力资源数据分析中的原始数据分析表。
人效的数据分析是基于历史的数据来进行数据的对标的预测,所以如果企业内部要进人效分析需要至少5年的人效指标的字段数据,这些历史数据包含公司历年的财务数据,还有公司的人员数据,人力成本数据等,在这些数据的基础上,我们才能进行人效的指标计算,然后用数据预测的工具方法,来进行下一年的人效,人力成本的数据预测。
有人想看数据安全能力成熟度模型(DSMM,以下简称DSMM)的数据处理安全部分,今天它来了….
人力成本的数据分析是年底我们必做的一个分析模块,人力成本的分析包含了薪酬的部分,同时我们要做人效分析的时候就必须要做人力成本的数据分析,所以我们今天来讲讲如何来做人力成本的分析,以及分析的思维。
David Nettleton是《商业数据挖掘:为预测分析项目处理,分析和建模》一书的作者,他还是一位在数据分析处理方面有丰富经验的顾问和学术研究者。 Q:您认为,实现一个数据分析项目最具挑战的方面有
这个就和sql中的合并类似了,数据集合合并你可以理解为与数据库合并类似,即内连接,左连接,右连接以及外连接。同样也等同于Pandas中的merge函数
大家好,今天我要和大家分享的是如何快速入门并高效学习Python数据分析。在这个过程中,我们要学会避免一个常见的陷阱——过度沉迷于细节的学习。下面是我的一些建议和心得,希望能帮助到大家。
首先产品经理应不应该学习代码?不同的产品经理持有不同的观点。编程能力在产品经理的工作中是一个非必要的基本功,但会使用编程能力会给我们自己的工作带来加分项。因此在有空闲时间时可以学习代码作为自己的一个加分项,或者学习技术架构里面的逻辑。
数据分析就是用合适的方法来发挥出数据的最大价值,这是一门结合了统计学,高等数学,工程学,商业决策等知识的技能,其中高等数学,工程学和统计学这些都是硬技能,而商业决策是属于软技能,数据分析师就是具备这些技能的岗位。数据分析师也有所侧重点,有的人是商业出身,偏向于商业领域,有的人是统计学出身,偏向于统计领域,有的人是工程学出身,更偏向于it领域。企业在进行招聘的时候,他们会根据自己的需求选择合适的数据分析师。
本文作者为数据海洋,海洋老师从一个数据分析师成长为管理过近百人的数据团队的负责人,这中间总结了不少经验,也踩了不少坑,现在他把这些分享出来,希望可以帮助到大家。总共有三篇,本篇为第一篇,主要写了数据分析师的入门需要的基本的知识,逻辑,工作方法。
Ben Porterfield 在自己的 Linkedin 主页这样形容自己:一个有经验的冲浪者。除了在 Santa Cruz 海岸冲浪以外,他还帮助一系列初创企业在变幻无穷的互联网浪潮中破浪前进。他是 Sticky, Inc.(译者注:一个成功的硅谷广告数据公司)的首席工程师,接着与小伙伴联合创立了 Rally Up (译者注:移动 APP 公司,2010年 被 AOL 收购)。
非结构化数据分析既不等同于舆情分析,也不等同于情感分析,它是一个数据驱动的将语义分析、人机互动、舆情分析三者结合的不断循环改进的良性过程。 虽然基本上国内大部分公司,言必提“大数据”,但是对于大部分CIO、CTO们来说,对数据的分析仍然停留在过去的阶段:对于非结构化数据分析的成熟度还远远落后于结构化数据。 但是现在移动端所带来的爆发式增长给大数据从业者带来了非常大的挑战,这些数据有很多是非结构化数据,充斥了人们交流的空间,相应的,对非结构化数据的分析也变得越来越重要——对非结构化数据进行分析、提取出有价值的
数据分析师必备技能SQL 在数据分析的整个流程中,数据获取是不可或缺的一环,那么作为数据分析师,我们不仅仅需要了解如何获取二手数据,还必须掌握如何从数据库中获取我们所需的一手数据。而事实上,在我面试过的数据分析师中,有部分分析师并没有掌握这项基本且重要的技能,以致于最终被淘汰,而这项基本且重要的技能就是会编写SQL。 SQL的基本概念和作用 SQL的基本概念:SQL是一种结构化查询语言(Structured Query Language),用于存取数据以及查询、更新和管理关系型数据库。对于专业的数据库管
关于数据分析,避免6个错误 1.走得太快,没空回头看路 初创公司里的人们仿佛一直在被人念着紧箍咒:“要么快要么死,要么快要么死。”他们是如此着急于产品开发,以至于他们常常没有空想用户对产品的具体使用细节,产品在哪些场景怎么被使用,产品的哪些部分被使用,以及用户回头二次使用产品的原因主要有哪些。而这些问题如果没有数据难以回答。 2.你没有记录足够的数据 光给你的团队看呈现总结出来的数据是没有用的。如果没有精确到日乃至小时的变化明细,你无法分析出来数据变化背后看不见的手。如果只是粗放的,断续的统计,没有人可以解
很多同学会经常看到“用户增长”“增长黑客”“增长团队”之类的说法,并且这些岗位常常一眼看上去和数据分析有关系。
初创公司里的人们仿佛一直在被人念着紧箍咒:“要么快要么死,要么快要么死。”他们是如此着急于产品开发,以至于他们常常没有空想用户对产品的具体使用细节,产品在哪些场景怎么被使用,产品的哪些部分被使用,以及用户回头二次使用产品的原因主要有哪些。而这些问题如果没有数据难以回答。
笔者只是一个客户端工程师,不是专业的数据分析师,只是碰巧在工作中与数据打交道比较多,做过客户端的数据传输SDK,客户端无埋点SDK,写过hive脚本,也折腾过spark,也做过不同通道数据的差异分析,仅此而已。本文试图从笔者自身有限的经历中,尝试给大家普及些数据分析的入门知识。
数据分析师近几年在国内互联网圈越来越火,很多开发都因为薪资和发展前景,希望转行到数据分析岗。今天,我们就来聊聊面试数据分析师的那些事。 其实,数据分析能力是每个互联网人的必备技能,哪怕你没有转行数据分析师的计划,也推荐你看看这个专题,提升你的数据能力。
抛开一些公司岗位设置奇怪的因素不谈,其实从一般意义的岗位职责或者技能要求的层面上来看,数据分析师和财务分析师的界限还是挺明显的:
【引子】 Porterfield的最新创业项目是Looker,一个商业数据分析解决方案提供商。主人公在下面这篇文章中向我们讲解创业者们如何可以从一开始就设计好数据分析的基本框架:将数据储存于何处?用什么工具分析最好?可以规避哪些常见的错误?以及,今天的你如何亡羊补牢? 关于数据分析,避免6个错误 1. 走得太快,没空回头看路 初创公司里的人们仿佛一直在被人念着紧箍咒:“要么快要么死,要么快要么死。”他们是如此着急于产品开发,以至于他们常常没有空想用户对产品的具体使用细节,产品在哪些场景怎么被使用,产品的哪
数据分析是指通过收集、整理、分析和解释数据来发现数据中隐藏的信息和关系的一种方法。数据分析的目的是为了提供洞察力和指导决策。
本文摘自《大数据实践之路:数据中台+数据分析+产品应用》一书! 作者介绍 @阿北 一名数据分析师,长期主义者,专注于个人成长; 期望花时间做一些有意思、有价值的事情; 《大数据实践之路:数据中台+数据分析+产品应用》作者; “数据人创作组联盟”成员。 做好业务分析的重点在于数据分析师要有良好的专业素养:一方面要有过硬的专业技能、了解业务;另一方面要能够通过合作和协调,让分析策略可以落地并正向影响业务。 这些内容在《大数据实践之路:数据中台+数据分析+产品应用》一书中都会有介绍,本篇文章主要先带大家了解业
人员流动和离职数据分析是我们分析降低离职率的重要手段,同时人员流动的数据在人力资源的数据里也是比较重的一个数据模块,因为我们每个月都要统计人员的入职,离职数据,同时根据入离职数据进行各种关键指标的数据分析,包括人员离职率,新进率,流动率等数据指标,我们月度,年度在分析的时候单单这类数据,就会有很多数据和表格产生,看起来相当的复杂。
非结构化数据分析既不等同于舆情分析,也不等同于情感分析,它是一个数据驱动的将语义分析、人机互动、舆情分析三者结合的不断循环改进的良性过程。 虽然基本上国内大部分公司,言必提“大数据”,但是对于大部分CIO、CTO们来说,对数据的分析仍然停留在过去的阶段:对于非结构化数据分析的成熟度还远远落后于结构化数据。 但是现在移动端所带来的爆发式增长给大数据从业者带来了非常大的挑战,这些数据有很多是非结构化数据,充斥了人们交流的空间,相应的,对非结构化数据的分析也变得越来越重要——对非结构化数据进行分析、提取
现在很多企业都在做数据化转型,相对应的是企业内部的各个部门也开始做数据化的转型准备。这几年很多的公司,很多的机构,很多的HR 都相继提出人力资源要做数据化转型,数据要驱动业务的发展,支持公司的战略。但是我们听到了太多的 WHY,战略层面的数据化转型,数据体系的搭建,人力资源整体的数据转型,人力资源支持业务的发展,HR的思维要如何的去转型思考。但是很少有人告诉你,作为一个HR 你在企业里,你应该怎么做,如何去在你自己的人力资源模块里进行数据化的转型,建立数据体系,人力资源结合业务去去确定业务,发现问题,解决问题。
这两年的大数据热潮带火了数据分析这个职业,很多人想转行干数据分析,但是又不知道现在这个行业的求职环境和前景如何,动了心却不敢贸然行动。
每个人家里都会有冰箱,冰箱是用来干什么的?冰箱是用来存放食物的地方。同样的,数据库是存放数据的地方。正是因为有了数据库后,我们可以直接查找数据。例如你每天使用余额宝查看自己的账户收益,就是从数据库读取数据后给你的。
数据跟踪员:机械拷贝看到的数据,很少处理数据 虽然这个工作的人还不能称作数据分析师,但是往往作这样工作的人还都自称是数据分析师,这样的人,只能通过×××系统看到有限的数据,并且很少去处理数据,甚至不理解数据的由来和含义,只是机械的把自己看到的数据拷贝出来,转发给相应的人。这类人发出来的数据,是否有意义,怎么解读,他自己是不知道的,只能期望收到数据的人了。 2数据查询员/处理员:数据处理没问题,缺乏数据解读能力 这些人可以称为分析师了,他们已经对数据有一定的理解了,对于大部分数据,他们也知道数据的定义,并且可
1、数据跟踪员:机械拷贝看到的数据,很少处理数据 虽然这个工作的人还不能称作数据分析师,但是往往作这样工作的人还都自称是数据分析师,这样的人,只能通过×××系统看到有限的数据,并且很少去处理数据,甚至不理解数据的由来和含义,只是机械的把自己看到的数据拷贝出来,转发给相应的人。这类人发出来的数据,是否有意义,怎么解读,他自己是不知道的,只能期望收到数据的人了。 2、数据查询员/处理员:数据处理没问题,缺乏数据解读能力 这些人可以称为分析师了,他们已经对数据有一定的理解了,对于大部分数据,他们也知道数据的定义,
1数据跟踪员:机械拷贝看到的数据,很少处理数据 虽然这个工作的人还不能称作数据分析师,但是往往作这样工作的人还都自称是数据分析师,这样的人,只能通过×××系统看到有限的数据,并且很少去处理数据,甚至不理解数据的由来和含义,只是机械的把自己看到的数据拷贝出来,转发给相应的人。这类人发出来的数据,是否有意义,怎么解读,他自己是不知道的,只能期望收到数据的人了。 2数据查询员/处理员:数据处理没问题,缺乏数据解读能力 这些人可以称为分析师了,他们已经对数据有一定的理解了,对于大部分数据,他们也知道数据的定义,并
1数据跟踪员:机械拷贝看到的数据,很少处理数据 虽然这个工作的人还不能称作数据分析师,但是往往作这样工作的人还都自称是数据分析师,这样的人,只能通过×××系统看到有限的数据,并且很少去处理数据,甚至不理解数据的由来和含义,只是机械的把自己看到的数据拷贝出来,转发给相应的人。这类人发出来的数据,是否有意义,怎么解读,他自己是不知道的,只能期望收到数据的人了。 2数据查询员/处理员:数据处理没问题,缺乏数据解读能力 这些人可以称为分析师了,他们已经对数据有一定的理解了,对于大部分数据,他们也知道数据的定义,并且
产品经理,你对用户的需求了解多少呢?你知道用户想要什么样的产品吗?你想知道用户将会如何看待你的产品吗?你想知道你设计的产品在用户中的口碑如何吗? 是的。每一个产品经理都希望在产品开始立项设计前,得到用
而基于这些数据的分析,可以挖掘到非常多有价值的信息,这些信息正在成为大多数企业业务增长、迭代更新的关键。
领取专属 10元无门槛券
手把手带您无忧上云