在信息时代,我们面临着海量的数据。然而,这些数据本身并没有意义。为了从数据中获得洞察力和价值,我们需要将其转化为可理解和有意义的形式。这就是数据可视化的重要性所在。本文将详细介绍数据可视化的概念、原则、工具以及它如何帮助我们理解和解释数据。
关于数据可视化的定义有很多,像百度百科的定义是:数据可视化,是关于数据视觉表现形式的科学技术研究。其中,这种数据的视觉表现形式被定义为,一种以某种概要形式抽提出来的信息,包括相应信息单位的各种属性和变量。这种定义可能显得比较晦涩难懂。在大数据分析工具和软件中提到的数据可视化,就是利用运用计算机图形学、图像、人机交互等技术,将采集或模拟的数据映射为可识别的图形、图像。
以上这张图片比较普遍现象的数据链路,如果你是厨师,最重要的肯定是做菜环节,也就分析环节。数据可视化只是最后的摆盘环节。
在数字时代初期,数据只是数学家与科学家们讨论的话题。而如今,不管任何领域,任何人,都逃脱不了对数据的讨论和研究。 由于数据大潮的到来和人们关于数据使用的讨论,一种新的设计语言正在兴起,它可以优美地将大
作者|David Hoffer 译者|Sophie 校对|Chenlu 编辑|Ivy 导读 要深入理解大数据,需要提高数据的可视化水平。在此过程中,数据可以变得更具可塑性、可行性,最终更加
如今,数据可视化在各行各业都得到了大量应用,它的出现不仅仅提升了说服力、可读性和逻辑性。而且对统计报表类也产生了巨大的影响。今天,小编带大家来看下数据可视化在统计报表中都有哪些应用。 一、表格已死,可
《可视化组织》的作者菲尔·西蒙在本文中讨论了数据可视化工具和它们改变商业对话的强大力量。大数据可能导致大的混乱,因此要从混乱中梳理清晰的数据,从而发现商业机会,就变得无比的重要。清晰可见的呈现出数据和发现数据的过程一样重要。通过可视化的工具创建热图、数据关系树图以及空间地理图,能够帮助CEO在几分钟内通过可视化的方式解释一个销售趋势。可视化能够把数据转换成对话。这一课题在菲尔·西蒙的即将出版的新书《大到无法忽视》中也被提及,《可视化组织:数据可视化,大数据,需求更优决策》(Wiley出版社,2014年)也
在Google搜索有关“大数据”,会出现很多个由立体0和1组成的图片,一些解释性的信息图示,甚至出现“黑客帝国”的界面。那“大数据”到底是什么,人类能够理解吗? 如果问一家大公司的首席执行官什么是“大数据”,他们可能会描述一些类似于黑匣子(飞机上的飞行记录器)的东西,或者在白板上画一朵云。如果问数据科学家,他们可能会向你解释一下 4V的概念,4V是指用信息图示解释(其实只是事实的视觉集合),当然还带有相应的说明。之所以这样做是因为“大数据”是一个有着不同含义、象征,应用于不同
最近在项目上常常听到这样的话:“我想要一个酷炫的数据大屏”,“设计一定要有科技感”,“这个可视化设计没有重点”……每当听到这些需求,作为设计师一般都是欲哭无泪的。到底什么叫酷炫有科技感?客户理解的数据大屏什么样?是数据还是可视化出了问题?? 这篇文章将会结合最近在数据可视化项目上的一些经历,从设计的角度,聊一聊什么是数据可视化,为什么需要可视化设计,以及该从何处着手来设计一个数据可视化平台。 1. 什么是数据可视化设计?(WHAT) 在聊如何设计数据可视化平台前,想先聊一下我所理解的数据可视化。“数据可视化
大数据文摘作品,转载要求见文末 编译 | 丁雪,姚佳灵 随着数据大环境(data climate)越来越快地发展,数据可视化的趋势永远在转变和变化。在过去五年、当下或更远的未来,我们处于什么位置?一些重要的事情正在发生…… 数据的意义 让我们从如何思考及如何处理数据开始,下面的数据演化流已经清楚地展示了这个流程: 简单地说,从原始数据开始。原始数据是指被感应器、人类或其它任何方式记录下来的数据,它们以其原始的形式(数字、符号或文字)存储下来。第二步,将数据以表、列和电子表格的形式组织起来,那样我们能够开始理
数据可视化到底是什么?需要具备什么样的能力?工作内容应该有哪些?其实数据本身没有意义,只有对实体行为产生影响时才成为信息。
杨凯,腾讯用户体验部成都设计中心高级交互设计师。负责腾讯云大数据相关设计,目前专注大数据可视化方向的研究。 近日星巴克与微信推出的社交礼品功能“用星说”,可以说刷遍了朋友圈。无论你爱不爱喝咖啡,星巴克
大数据可视化的新动态 Intetix Foundation(英明泰思基金会)由从事数据科学、非营利组织和公共政策研究的中国学者发起成立,致力于通过数据科学改善人类社会和自然环境。通过联络、动员中美最顶尖的数据科学家和社会科学家,以及分布在全球的志愿者,我们创造性地践行着我们的使命:为美好生活洞见数据价值。 1 引言 数据可视化是将数据以不同形式展现在不同系统中,其中包括属性和变量的单位信息[1]。基于可视化发现数据的方法允许用户使用不同的数据源,来创建自定义分析。先进的分析集成了许多方法,为了支持交互式
近日星巴克与微信推出的社交礼品功能“用星说”,可以说刷遍了朋友圈。无论你爱不爱喝咖啡,星巴克似乎都成为了一种文化象征。上班族青睐,小清新喜欢,基本上大家看到绿色的人鱼标志就能马上认出它来。 虽然一直也
数据可视化是以图表和图形的形式呈现数据,多个可视化和信息位的组合仍然被称为信息图表。而数据可视化工具就是生成这种呈现的软件。数据可视化为用户提供了交互式探索和分析数据的直观手段,使他们能够有效地识别有趣的模式、推断相关性和因果关系,并支持意义构建活动。
数据可视化在医疗领域中扮演着的角色。通过将医疗数据以图表、图形和可视化的方式展示,医疗专业人员可以更好地理解和分析数据的重要性,从而做出更准确的决策。
大数据时代,数据是非常重要的,怎样把它的重要之处展示出来成为我们需要掌握的既能,这也就是本文要讲的重点——数据可视化。
数据是非常强大的。当然,如果你能真正理解它想告诉你的内容,那它的强大之处就更能体现出来了。 通过观察数字和统计数据的转换以获得清晰的结论并不是一件容易的事。必须用一个合乎逻辑的、易于理解的方式来呈
数据是非常强大的。当然,如果你能真正理解它想告诉你的内容,那它的强大之处就更能体现出来了。 通过观察数字和统计数据的转换以获得清晰的结论并不是一件容易的事。必须用一个合乎逻辑的、易于理解的方式来呈现数
大数据时代,数据可视化是其中一项非常火热的应用技术,不管是电商购物节还是各类科技新品发布会,数据可视化都扮演着极为重要的角色。相对于纷繁复杂的数字和文字,可视化图表更能清晰简洁地表达信息,使人们一眼就能看清数据的真实意义。数据可视化不仅在数据展示上有着极佳的表现,在数据分析方面,也可以继续对数据进行深层次挖掘分析。
👆关注“博文视点Broadview”,获取更多书讯 数据可视化设计是将大数据背后的结构、关联、趋势等,通过可视化的方式直观地呈现出来,让数据变得更具有可读性,并告诉人们数据背后的意义,这可以极大地帮助人们利用大量潜在有意义的数据信息来实现商业价值。 也正因如此,数据可视化设计已成为当下热门的设计工种。 数据可视化通过视觉设计的表现手法可以将复杂无形的数据具象化,将凌乱的数据故事化。其既能展示视觉设计后的数据之美,又能用设计语言将数据信息有效地传达。 本文就来看一下如何进行大屏数据可视化产品的设计。 01
塔夫特所说,“图形表现数据。实际上比传统的统计分析法更加精确和有启发性。”对于广大的编辑、设计师、运营分析师、大数据研究者等等都需要从不同维度、不同层面、不同粒度的数据处理统计中,借助图表和信息图的方式为用户(只获得信息)、阅读者(消费信息)及管理者(利用信息进行管理和决策)呈现不同于表格式的分析结果。数据可视化技术综合运用计算机图形学、图像、人机交互等,将采集、清洗、转换、处理过的符合标准和规范的数据映射为可识别的图形、图像、动画甚至视频,并允许用户与数据可视化进行交互和分析。而任何形式的数据可视化都会由丰富的内容、引人注意的视觉效果、精细的制作三个要素组成,概括起来就是新颖而有趣、充实而高效、美感且悦目三个特征。
数据可视化,是指用图形的方式来展现数据,从而更加清晰有效地传递信息,主要方法包括图表类型的选择和图表设计的准则。
大数据时代一个显著特征就是数据可视化的崛起。作为数据最上层的展现环节,数据可视化将技术与艺术完美结合,借助图形化的手段,清晰有效地传达与沟通信息。一方面,数据赋予可视化以意义;另一方面,可视化增加数据的灵性,两者相辅相成,帮助企业从信息中提取知识、从知识中收获价值。 在大数据的推动下,数据可视化的内涵和外延都有了明显的变化,逐渐由单纯的展现演变为报表、分析和展现的综合体,并且落地到云端和移动端。主流的数据可视化既包括R、D3.js、Processing.js等开源的、可编程的工具,也
数据是非常强大的。当然,如果你能真正理解它想告诉你的内容,那它的强大之处就更能体现出来了。 通过观察数字和统计数据的转换以获得清晰的结论并不是一件容易的事。必须用一个合乎逻辑的、易于理解的方式来呈现数据。 谈谈数据可视化。人类的大脑对视觉信息的处理优于对文本的处理——因此使用图表、图形和设计元素,数据可视化可以帮你更容易的解释趋势和统计数据。 点击这里下载我们的免费指南,关于数据可视化更多的例子和提示。 但是,并非所有的数据可视化是平等的。(点击“为什么大多数人的图表和图形看起来像废话”了解我想表达的意思)
本文由CDA数据分析研究院翻译,译者:王晨光,转载必须获得本站、原作者、译者的同意,拒绝任何不表明译者及来源的转载! 人们总是倾向于把数据可视化与大品牌和大型企业联系在一起。Target, Deloitte, GitHub和Time Warner Cable 都使用数据可视化工具来分析和解释有关其客户的信息,使他们能够更好地进行市场定位,制定销售策略,完善内部流程。 对于许多小型企业来说,数据可视化可能在很大程度上只是一个陌生的概念,或者说只是一个时髦新鲜的词汇而不是现实。这些企业大多没有意识到他们可能已经
经常在网络上看到这样的问题:“从零开始学习数据可视化,需要怎么开始?”《Data at Work》一书的作者Jorge Camoes在一次演讲中,提出了“数据可视化思考者”这一概念,并分享了他的12个想法。我们从中选取了最具价值的8个,进行了编译。
本文转自网络,如涉侵权请及时联系我们 数据可视化可以帮你更容易的解释趋势和统计数据。 数据是非常强大的。当然,如果你能真正理解它想告诉你的内容,那它的强大之处就更能体现出来了。 通过观察数字和统计数据的转换以获得清晰的结论并不是一件容易的事。必须用一个合乎逻辑的、易于理解的方式来呈现数据。 谈谈数据可视化。人类的大脑对视觉信息的处理优于对文本的处理——因此使用图表、图形和设计元素,数据可视化可以帮你更容易的解释趋势和统计数据。 但是,并非所有的数据可视化是平等的。(点击“为什么大多数人的图表和图形看
数据是非常强大的。当然,如果你能真正理解它想告诉你的内容,那它的强大之处就更能体现出来了。
说到数据可视化,大家可谓耳熟能详,设计师、数据分析师、数据科学家等,都用各种方式各种途径做着数据可视化的工作。
数据可视化不仅仅是把数字变成图形那么简单,它是一种强大的工具,能够帮助我们从数据中获得洞察力,并以此做出更加明智的决策。无论是产品开发还是市场营销,一个清晰的数据可视化可以开启一扇通往更好决策的大门。
上篇文章简单的介绍了数据可视化的基础,将数据进行设计可视化后,可以让我们有一种全新的方式去认识数据,改变对数据的呈现和思考方式。那现在就让开始做一份数据的可视化表,一步步的来看下我们如何获取数据,以及
“数据可视化,不是单纯的数据呈现,更是对行业的理解,对使用感受的掌控,对专业数据的整理分析,我们精益求精,只为让决策更加高质高效。”——数字冰雹副总经理丁冬 来源:数据猿 记者:张艳飞 春夏 “数据
说起“数据可视化”,很多人的第一反应便聚焦在“数据”两个字上,其实“可视化”三个字的意义要更重要一些。说起“可视化”,就需要提起一组数字:“人脑处理图片的速度是处理文字的60000倍,人在看报纸时,99%的文字信息会自动被过滤掉,脑子里只残留了可怜的1%,一篇6000字的文章需要10分钟看完,而压缩成一张图片则只需要10/6000分钟的时间。”
该文总结了技术社区在数据可视化方面的一些实践和思考。通过具体案例,介绍了数据可视化的概念、设计原则、图表类型、颜色和字体等方面的实践,并探讨了数据可视化的极限处理。
SPSS软件是一种常用的统计分析工具,被广泛应用于社会科学、医学研究等领域。本文将对SPSS软件的主要功能进行详细分析,并结合一个实际案例进行具体使用方法的说明。
随着大数据时代的到来,数据可视化工具越来越受到关注和重视。Davinci软件作为一款国产开源的数据可视化工具,具有多种优秀的特点,可广泛应用于数据分析、数据可视化、商业决策等领域。本文主要研究Davinci软件的特点、功能、应用场景和未来发展,旨在探索其在数据可视化领域所扮演的角色,以及其未来发展的趋势和挑战,对于深入理解现代数据可视化工具的应用价值具有重要意义。
作者:Ross Crooks | @rtcrooks 数据是非常强大的。当然,如果你能真正理解它想告诉你的内容,那它的强大之处就更能体现出来了。 通过观察数字和统计数据的转换以获得清晰的结论并不是一件
编译|丁雪 佘彦遥 姚佳灵 校对|黄念 席雄芬 前言 纵观现代可视化技术,我们看到了极简主义。在数字化的世界,所有的资源只需点击几下鼠标,就能将手中大量的信息简单呈现。但是,我们不是碰巧才做到这些的,这得感谢那些勇于创新的前辈们。正所谓“前人栽树,后人乘凉”,我们站在了他们的肩膀上,才有了今天比较炫酷的可视化技术。 今天,大数据文摘先请大家看看11张静态的数据可视化图,然后请大家看看一段展示动态数据可视化的视频。通过今天的可视化展示,相信大家更能体会到数字世界中艺术的重要性! 在大数据时代和信
作为一名数据工作者,我每天会接触到很多的数据可视化成果,美好的可视化作品简洁明快炫酷非常,让人心情舒畅。
最近两年炒的比较火的就是数据分析,数据分析的直观呈现就需要进行数据可视化。大到产品的设计,小到细微功能的删减,慢慢都通过数据来说明它是否有存在的价值。未来的一切都将以数据来说明问题。而且也有数据表明,一线城市对数据分析岗位的需求也越来越大。所以掌握一两门的数据可视化框架以备不时之需!
本文通过数据可视化的方式,展示了成都市空气质量的相关数据,包括PM2.5值、AQI指数等。作者通过分析这些数据,揭示了成都市空气质量的变化趋势,并提出了改善空气质量的建议。
AI 科技评论消息,1 月 16 日,百度 ECharts 团队发布旗下知名开源产品 ECharts 的最新 4.0 版本,并宣布品牌升级为「百度数据可视化实验室」(http://vis.baidu.com/)。除了这两大消息外,团队还正式发布深度学习可视化平台 Visual DL,以及其他一系列重量级产品,包括 ECharts GL 1.0 正式版,ZRender 4.0 全新版本,WebGL 框架 ClayGL 等。 百度数据可视化实验室的产品矩阵如下图所示,内容涵盖基础库、各种可视化产品以及应用产品。
本文系投稿作品 作者 | 陈屹 版权归作者所有,转载请联系作者 大数据文摘欢迎各类优质稿件 请联系tougao@bigdatadigest.cn 马云曾经说过『人类正从IT时代走向DT时代』。正如他说言,今天几乎所有的互联网公司背后都有一支规模庞大的数据团队和一整套数据解决方案作决策,这个时代已经不是只有硅谷巨头才玩数据的时代,是人人都在依赖着数据生存,可以说如今社会数据价值已经被推到前所未有的高度。 我作为一名前端工程师在阿里巴巴数据团队工作多年,深入了解数据生产加工链路与产品化。我们这群前端是与界面最
亲爱的读者,你是否也有在特定场景使用的非常便捷的软件,欢迎评论区留言给我们,和大家分享这些使工作得心应手、效率百倍的瞬间!
数据可视化,是指将相对晦涩的的数据通过可视的、交互的方式进行展示,从而形象、直观地表达数据蕴含的信息和规律。步入大数据时代,各行各业对数据的重视程度与日俱增,随之而来的是对数据进行一站式整合、挖掘、分析、可视化的需求日益迫切,数据可视化呈现出愈加旺盛的生命力。
大数据及其应用的迅速发展,使得大数据人才缺口较大,大数据也迅速成为行业和市场的热点,更多的企业无论是对人才的招聘还是在培训都成了刚需,大数据的就业领域是很宽广的,不管是科技领域,还是食品产业,零售业等等,都是需要大数据人才进行大数据的处理
怎样才能称得上一名称职的数据可视化思考者?《Data at Work》的作者Jorge Camoes所总结的12点,或许能在新的一年里给大家一些新的思考和启发。
领取专属 10元无门槛券
手把手带您无忧上云