程序访问 MySQL 数据库时,当查询出来的数据量特别大时,数据库驱动把加载到的数据全部加载到内存里,就有可能会导致内存溢出(OOM)。
随着互联网、移动互联网、物联网和各种智能终端的快速发展,各种数据无时无刻地生成,新数据的产生成大爆炸趋势,如此大数据量的实时查询和分析能力已然成为企业报表分析系统的重要考量指标。
本次分享将结合多个大数据项目与产品研发的经验,探讨如何基于不同的需求场景搭建通用的大数据平台。内容涵盖数据采集、存储与分析处理等多方面的主流技术、架构决策与技术选型的经验教训。 大数据平台内容 数据源
泛指非关系型的数据库,随着互联网Web2.0网站的兴起,传统的关系数据库在应付web2.0网站,特别
一般系统微服务接口要同时兼容:小程序版,公众号版,H5/Wap版,App版是一项复杂系统性的工作,因为每个客户端所使用的开发语言都可能不一致,
先来分享一下关于优化数据库设计这块内容,这里从三个方面:规范化与反规范化、合适的数据类型、数据分区。
最近在看关于大数据、数据仓库 、数据架构的《数据架构:大数据、数据仓库以及Data Vault》一书,关于大数据有些思考,结合FineBI的Spider引擎,可看看Spider引擎对于大数据的阐释,以及在大数据平台架构中,可以处于什么样的位置。
我们说 Mysql 单表适合存储的最大数据量,自然不是说能够存储的最大数据量,如果是说能够存储的最大量,那么,如果你使用自增 ID,最大就可以存储 2^32 或 2^64 条记录了,这是按自增 ID 的数据类型 int 或 bigint 来计算的;如果你不使用自增 id,且没有 id 最大值的限制,如使用足够长度的随机字符串,那么能够限制单表最大数据量的就只剩磁盘空间了。显然我们不是在讨论这个问题。
所谓的“大表”指的是一张表中有大量的数据,而通常情况下数据量越多,那么也就意味着查询速度越慢。这是因为当数据量增多时,那么查询一个数据需要匹配和检索的内容也就越多,而检索的项目越多,那么查询速度也就越慢。
当一张表的数据达到几千万时,你查询一次所花的时间会变多,如果有联合查询的话,我想有可能会死在那儿了。分表的目的就在于此,减小数据库的负担,缩短查询时间。
哈啰出行作为阿里系共享单车的头部企业,在江湖中的知名度还是有的,而今天我们就来看一道哈啰 Java 一面中的经典面试题:当数据表中数据量过大时,应该如何优化查询速度?
为什么要分表 当一张表的数据达到几千万时,你查询一次所花的时间会变多,如果有联合查询的话,我想有可能会死在那儿了。分表的目的就在于此,减小数据库的负担,缩短查询时间。 mysql中有一种机制是表锁定和行锁定,是为了保证数据的完整性。表锁定表示你们都不能对这张表进行操作,必须等我对表操作完才行。行锁定也一样,别的sql必须等我对这条数据操作完了,才能对这条数据进行操作。 mysql proxy:amoeba 做mysql集群,利用amoeba。 从上层的java程序来讲,不需要知道主服务器和从服务器的来源,即
最近看到了一个很有趣的数据库 Procella ,它的架构图就和当初亚马逊公司发布的数据库论文 Aurora 里面的一样,一眼就吸引住我了。
NoSQL,泛指非关系型的数据库。随着互联网web2.0网站的兴起,传统的关系数据库在处理web2.0网站,特别是超大规模和高并发的SNS类型的web2.0纯动态网站已经显得力不从心,出现了很多难以克服的问题,而非关系型的数据库则由于其本身的特点得到了非常迅速的发展。NoSQL数据库的产生就是为了解决大规模数据集合多重数据种类带来的挑战,尤其是大数据应用难题。
java.sql.SQLException: ORA-01000: 超出打开游标的最大数 问题在一个大数据量的嵌套循环下 close() 关闭 createStatement() 根本无效,即使把执行过程封装在类里,而用循环来调用类也会有问题。
废话不多说,开始安装,以ubuntu18.04为例 更多内容 - 使用python远程操作mongodb mongodb的安装 mongodb具有两种安装方式:命令安装 或 源码安装 命令安装 在ubuntu中使用apt-get工具安装 sudo apt-get install -y mongodb-org 或参考官方文档 https://docs.mongodb.com/manual/tutorial/install-mongodb-on-ubuntu/ 源码安装 选择相应版本和操作系统
Mongodb的介绍和安装 学习目标 了解 非关系型数据库的优势 了解 mongodb的安装 ---- 1. mongodb的介绍 1.1 什么是mongodb mongodb 是一个功能最丰富的NoSQL非关系数据库。由 C++ 语言编写。 mongodb 本身提供S端存储数据,即server;也提供C端操作处理(如查询等)数据,即client。 1.2 SQL和NoSQL的主要区别 在SQL中层级关系: 数据库>表>数据 而在NoSQL中则是: 数据库>集合>文档 1.2.1 数据之间无关联性 SQL中
《大数据量下,58同城mysql实践》 WOT(World Of Tech)2015,互联网运维与开发者大会将在北京举行,会上58同城将分享《大数据量下,58同城mysql实战》的主题,干货分享抢先看
随着互联网Web2.0网站的兴起,传统的关系数据库在应付Web2.0网站,特别是超大规模和高并发的SNS类型的Web2.0纯动态网站已经显得力不从心,暴露了很多难以克服的问题:
MySQL是目前互联网公司使用最广的数据库,InnoDB是MySQL使用最广的存储引擎,MyISAM和InnoDB的五项最佳实践,和大家聊聊,尽量多讲“为什么”。
本篇文章将讲解NoSQL,这里只是一个简单的讲解关系型 数据库的问题和NoSQL的优点,并不涉及到技术问题。
最近的大数据是非常的火,如何理解大数据与DATABASE 不同的地方,今天想瞎说八道一下,个人对大数据和数据库之间不同的一些想法。
第一篇,说说MySQL两个最常用的存储引擎,MyISAM和InnoDB。照自己的理解,把一些知识点总结出来,不只说知识点,多讲“为什么”。 一、关于count(*) 知识点:MyISAM会直接存储总行数,InnoDB则不会,需要按行扫描。
Python作为一门多用途的编程语言,拥有强大的数据库编程功能,适用于各种应用场景,从Web开发到数据分析。本文将深入介绍如何使用Python进行数据库编程,包括连接到数据库、执行查询、操作数据,以及高级技巧和性能优化。
在MySQL的世界里,InnoDB存储引擎就像心脏一样,为数据库的稳定运行提供了强大的动力。今天,我们将深入探讨InnoDB存储引擎的默认性、使用原因、运行原理、应用场景以及源码分析。如果你对数据库的内部机制感兴趣,或者正在寻找提高数据库性能的秘诀,那么这篇文章绝对不容错过!
我们做政企客户的解决方案支撑工作,一直在跟客户提到“大数据”,通过大数据就能将数据转化成推动精准营销、精准管理的利器。但实际,我们对大数据的理解有多少,今天我们用几张图帮助建立对大数据的技术理解。
例如,使用 MySQL 数据库判重,或使用 List.contains() 或 Set.contains() 判重就不可行,因为 MySQL 在数据量大时查询就会非常慢,而数据库又是及其珍贵的全局数据库资源。
零氪科技作为全球领先的人工智能与医疗大数据平台,拥有国内最大规模、体量的医疗大数据资源库和最具优势的技术支撑服务体系。多年来,零氪科技凭借在医疗大数据整合、处理和分析上的核心技术优势,依托先进的人工智能技术,致力于为社会及行业、政府部门、各级医疗机构、国内外医疗器械厂商、药企等提供高质量医疗大数据整体解决方案,以及人工智能辅助决策系统(辅助管理决策、助力临床科研、AI 智能诊疗)、患者全流程管理、医院舆情监控及品牌建设、药械研发、保险控费等一体化服务。
InnoDB,5项最佳实践,知其所以然?
我在一次社区活动中做过一次分享,演讲题目为《大数据平台架构技术选型与场景运用》。在演讲中,我主要分析了大数据平台架构的生态环境,并主要以数据源、数据采集、数据存储与数据处理四个方面展开分析与讲解,并结合具体的技术选型与需求场景,给出了我个人对大数据平台的理解。本文是演讲内容的第一部分。 大数据平台是一个整体的生态系统,内容涵盖非常丰富,涉及到大数据处理过程的诸多技术。在这些技术中,除了一些最基础的平台框架之外,针对不同的需求场景,也有不同的技术选择。这其中,显然有共性与差异性的特征。若从整个开发生命周期的角
在当今数据驱动的时代,MySQL作为流行的开源关系型数据库管理系统,经常需要处理海量的数据。本文将实战讲解MySQL在大数据量下的解决方案,包括索引优化、查询优化、分表分库、读写分离和存储引擎选择等方面,并通过具体的SQL代码示例来展示这些策略的实际应用。写本文的目的主要是,目前业务系统中的数据量越来越多,需要进行优化处理。
昨天和朋友交流,联想起Oracle的两个特性,approx_count_distinct 和 SQL in Silicon,从软件到硬件,从典型SQL入手的优化,Oracle一步一步走向细节和性能的极致。 在Oracle 12c中,有一个新的函数被引入进来 - approx_count_distinct 。这个函数的作用是,当我们进行Count Distinct计算时,给出一个近似值。 TOM说,这个函数会带来5x ~ 50x的性能提升,精度可以达到97%以上。在不需要绝对精确的返回值时,这个函数可以发挥其
额,数据库读写分离虽然不难,但并不是所有的“数据库扛不住”的场景,都应该用读写分离。今天花1分钟简单介绍下这个场景。
自助分析平台是构建在大数据平台之上的,依托于大数据平台的数据研发能力,通过统一的数据服务,实现对数据查询、分析的统一管理,为企业业务分析提供高效的数据决策支持,同时也避免数据工程师陷入繁杂的提数需求中。自助分析平台是有计算机基础的业务人员能够快速上手的前端产品,既要有大数据的处理性能,有需要有简单好用的可视化分析能力,只有让业务人员能够快速掌握使用方法,和公司的业务结合起来,自助分析平台才有价值。其实,一直以来,各大公司的数据分析平台都只有一个目标——干掉Excel。
RD:单库数据量太大,数据库扛不住了,我要申请一个数据库从库,读写分离。 DBA:数据量多少? RD:5000w左右。 DBA:读写吞吐量呢? RD:读QPS约200,写QPS约30左右。 上周在公司
开始之前,先说说写这篇博文的背景,本来是想写MongoDB的内容,但是MongoDB又是非关系型数据库中最火的一个。我还是本着自己一直习惯的学习步骤,先有全局观,再着眼于微观,所以有必要先了解一下非关系数据库的发展历史,再开始学习MongoDB。否则,我们学习再多的MongoDB也只能是手中的一把沙,抓的越紧,剩下的越少。
卡思数据是国内领先的视频全网数据开放平台,依托领先的数据挖掘与分析能力,为视频内容创作者在节目创作和用户运营方面提供数据支持,为广告主的广告投放提供数据参考和效果监测,为内容投资提供全面客观的价值评估。
MySQL分表分库是一种数据库架构设计的技术,在特定的场景下可以优化数据库性能和可扩展性。
本文链接:https://blog.csdn.net/u014427391/article/details/95992173
NoSQL在2010年风生水起,大大小小的Web站点在追求高性能高可靠性方面,不由自主都选择了NoSQL技术作为优先考虑的方面。今年伊始,InfoQ中文站有幸邀请到凤凰网的孙立先生,为大家分享他之于NoSQL方面的经验和体会。
在Redis 在 2.8.9 版本才添加了 HyperLogLog,HyperLogLog算法是用于基数统计的算法,每个 HyperLogLog 键只需要花费 12 KB 内存,就可以计算接近 2^64 个不同元素的基数。HyperLogLog适用于大数据量的统计,因为成本相对来说是更低的,最多也就占用12kb内存
##引言 前文回顾:《数据智能时代来临:本质及技术体系要求》作为本系列的第一篇文章,概括性地阐述了对于数据智能的理解以及推出了对应的核心技术体系要求:
NoSQL最常见的解释是“non-relational”, “Not Only SQL”。泛指非关系型的数据库。它们不保证关系数据的ACID特性。 NoSQL一词最早出现于1998年,是Carlo Strozzi开发的一个轻量、开源、不提供SQL功能的关系数据库。2009年,Last.fm的Johan Oskarsson发起了一次关于分布式开源数据库的讨论,来自Rackspace的Eric Evans再次提出了NoSQL的概念,这时的NoSQL主要指非关系型、分布式、不提供ACID的数据库设计模式。2009年在亚特兰大举行的"no:sql(east)“讨论会是一个里程碑,其口号是"select fun, profit from real_world where relational=false;”。因此,对NoSQL最普遍的解释是"非关联型的",强调Key-Value Stores和文档数据库的优点,而不是单纯的反对RDBMS。
第一点:导入消息接收人的数据可以支持excel导入,然后去各个业务线去拉取完整的用户id即可,导入的数据需要分页提交给服务或者分页落库
需求: ①、原本有10亿个号码,现在又来了10万个号码,要快速准确判断这10万个号码是否在10亿个号码库中? 解决办法一:将10亿个号码存入数据库中,进行数据库查询,准确性有了,但是速度会比较慢。 解决办法二:将10亿号码放入内存中,比如Redis缓存中,这里我们算一下占用内存大小:10亿*8字节=8GB,通过内存查询,准确性和速度都有了,但是大约8gb的内存空间,挺浪费内存空间的。 ②、接触过爬虫的,应该有这么一个需求,需要爬虫的网站千千万万,对于一个新的网站url,我们如何判断这个url我们是否已经爬过了? 解决办法还是上面的两种,很显然,都不太好。 ③、同理还有垃圾邮箱的过滤 大数据量集合,如何准确快速的判断某个数据是否在大数据量集合中,并且不占用内存。
由于现在 ORM 框架的成熟运用,很多小伙伴对于 JDBC 的概念有些薄弱,ORM 框架底层其实是通过 JDBC 操作的 DB
Java当中常用的Excel文档导出主要有POI、JXL和“直接IO流”这三种方式,三种方式各自分别有不同的优势与缺点,下面将分行对其进行简
领取专属 10元无门槛券
手把手带您无忧上云