参考博客1给出了一种所谓的平滑帅气的秒级扩容的架构方案,但我个人却认为,这个看似没有什么问题的方案在实际中几乎没什么用处,业界也几乎不会用这种方案来进行扩容(分库分表)。为了便于说明这一点,本文先简单回顾下该方案,然后分析该方案为什么没有用,最后给出三种业界广泛使用的分库分表的平滑扩容方案。
马上十一、中秋双节,很多客户开始做节日活动,基本都有一个共性需求:活动期间,流量预计翻N备,由此引发了一轮MySQL的容量治理与保障。
昨天我们分享了怎么不停机进行分库分表数据迁移(数据库分库分表后,我们生产环境怎么实现不停机数据迁移)后来有好多朋友问我,说他们的系统虽然也到了差不多分表的地步了,但是,不知道具体拆分多少张表,分多了又怕浪费公司资源,分少了又怕后面怎么去扩容,还有另一些朋友说,所在的公司规模还不大,尚在发展中,公司压根就没这么资源给他们这么去拆分。
像我这样的菜鸟,总会有各种疑问,刚开始是对 JDK API 的疑问,对 NIO 的疑问,对 JVM 的疑问,当工作几年后,对服务的可用性,可扩展性也有了新的疑问,什么疑问呢?其实是老生常谈的话题:服务的扩容问题。
7月中旬,腾讯云7*24h售后支持群收到来自X-Girl(化名)客户的消息,客户直呼咱家数据库帮大忙了,想要亲自感谢腾讯云MySQL团队。
像我这样的菜鸟,总会有各种疑问,刚开始是对 JDK API 的疑问,对 NIO 的疑问,对 JVM 的疑问...
刚工作的小伙伴,总会有各种疑问,刚开始是对 JDK API 的疑问,对 NIO 的疑问,对 JVM 的疑问,当工作几年后,对服务的可用性,可扩展性也有了新的疑问,什么疑问呢?其实是老生常谈的话题:服务的扩容问题。
这个你必须面对的事,就是当你已经弄好分库分表方案,测试也通过了,数据能均匀分布到各个库和表里去,而且接着你还通过双写方案上了系统,已经直接基于分库分表方案在搞了。
突然! 扩容了,扩容成6个库,每个库需要12个表,你怎么来增加更多库和表? 当你已经弄好分库分表方案,测试也通过了,数据能均匀分布到各个库和表里去,而且接着你还通过双写方案上了系统,已经直接基于分库分表方案在搞了。 需求来了~现在这些库和表又支撑不住了,要继续扩容,咋办?
众所周知,数据库很容易成为应用系统的瓶颈。单机数据库的资源和处理能力有限,在高并发的分布式系统中,可采用分库分表突破单机局限。本文总结了分库分表的相关概念、全局ID的生成策略、分片策略、平滑扩容方案、以及流行的方案。
每个创业公司基本都是从类似 SSM 和 SSH 这种架构起来的,没什么好讲的,基本每个程序员都经历过。
分布式数据库已经流行好多年,产品非常众多,其中分布式数据库中间件使用场景最广。本文主要是总结如何基于分布式数据库中间件做数据库架构设计,以充分发挥它的分布式能力。各个中间件产品功能核心原理相同,细节上有些区别。这里仅以阿里云的DRDS为例分析,在产品架构、功能、成熟度和市场占有率上,它都比同行产品有优势。
京东容器数据库系统,管理1800台物理计算节点,生产1W+ 多MySQL Docker容器实例。架构简单可靠,Docker容器计算平台与MySQL集群管理平台解耦处理。为描述方便,京东容器化数据库系统命名为CDS,底层京东Docker容器计算平台命名为JDOS。 本文重点介绍JDOS如何支持CDS。CDS是更大的话题,后续数据库团队会分享相关实践。 介绍 CDS依赖京东坚实的JDOS技术,生产运行1W+个MySQL容器实例。CDS借助JDOS技术优势获得主要3个方面的技术收益: CDS借助Docker容器
作者:王克锋 出处:https://kefeng.wang/2018/07/22/mysql-sharding/ 众所周知,数据库很容易成为应用系统的瓶颈。单机数据库的资源和处理能力有限,在高并发的分布式系统中,可采用分库分表突破单机局限。本文总结了分库分表的相关概念、全局ID的生成策略、分片策略、平滑扩容方案、以及流行的方案。 1 分库分表概述 在业务量不大时,单库单表即可支撑。当数据量过大存储不下、或者并发量过大负荷不起时,就要考虑分库分表。 1.1 分库分表相关术语 读写分离: 不同的数据库,同步相同
数据库是企业核心业务运行的重要组成部分,数据是企业的生命线,如果数据库出现宕机、数据丢失或不可用等问题,将会对企业的生产、营销和决策产生难以预估的影响,因此,一套高可用的数据库架构对于企业来说至关重要,可以最大化保证业务稳定性和数据可靠性。腾讯云MySQL推出全场景高可用性架构(All-Scenario High Availability Architecture,AS-HAA),用户可根据实际业务需求、业务类型自行配置。
众所周知,数据库很容易成为应用系统的瓶颈。单机数据库的资源和处理能力有限,在高并发的分布式系统中,可采用分库分表突破单机局限。
我们在工作中会有各种疑问,刚开始是对 JDK API 的疑问,对 NIO 的疑问,对 JVM 的疑问,当工作几年后,对服务的可用性,可扩展性也有了新的疑问,什么疑问呢?其实是老生常谈的话题:服务的扩容问题。
Serverless 数据库作为近几年云原生数据库领域的重要发展方向,自 2018 年 AWS 率先推出 Aurora Serverless MySQL 服务,打响 Serverless 数据库之战的第一枪以来,各大云平台厂商一直在该领域不断深耕探索。9 月 7 日,在 2023 腾讯全球数字生态大会云原生数据库技术演进与实践专场上,腾讯云数据库团队重磅发布了云原生数据库 TDSQL- C Serverless 2.0 版本。在这场分享中,腾讯云数据库产品经理陈昊老师介绍了腾讯云 TDSQL-C Serverless 独有的弹性伸缩方案,本文就以此为引,深度探索一下 TDSQL-C Serverless 的纵向弹性伸缩策略及稳定性。
数据库很容易成为系统性能的一个瓶颈,单机存储容量、IO、CPU处理能力都有限,当单表的数据量达到1000W或100G以后,库表的增删改查操作面临着性能大幅下降的问题。存储容量现在一般容易解决,主要是IO瓶颈和CPU瓶颈,最终都会导致数据库的活跃连接数增加,进而逼近甚至达到数据库可承载活跃连接数的阈值。从业务方来看,就是数据库可用连接少,甚至无连接可用。
读写分离与分库分表,分布式事务 MySql存储引擎,建表规范,事务级别,sql优化,读写分离思想等。 了解过读写分离吗? 你说读的时候读从库,现在假设有一张表User做了读写分离,然后有个线程在一个事务范围内对User表先做了写的处理,然后又做了读的处理,这时候数据还没同步到从库,怎么保证读的时候能读到最新的数据呢? 你如何保证系统的稳定性? 答:分布式的链路一般都很长,所以我们首先通过全链路压测,分析整个链路,到底是哪个节点出现瓶颈。如果是数据层出现瓶颈,那么可以考虑加缓存,读写分离等降低数据库压力,如
作者:赵珣 腾讯云监控工程师 简介 云数据库 MySQL(TencentDB for MySQL)是腾讯云基于开源数据库 MySQL 专业打造的一种高性能分布式数据存储服务,提供了备份恢复、监控、容灾、快速扩容、数据传输等全套解决方案,简化数据库运维工作,让用户专注于业务发展。 云数据库 MySQL 的优势: 快速便捷的数据库服务交付能力,在几分钟内部署可扩展的 MySQL,并可按需弹性升降配置; 真正 100% 的 MySQL 兼容能力,主流 MySQL 分支完全兼容; 提供热备、冷备、binlog
免费云数据库mysql足以提升人们的业绩,打造业务高峰。这款数据库拥有着一系列的服务项目,在被使用时方便又安全,产生了保护的作用,同时又不会加剧工作压力。
Shopee(https://shopee.com/)是东南亚和台湾地区领先的电子商务平台,覆盖新加坡、马来西亚、菲律宾、印度尼西亚、泰国、越南和台湾等七个市场。Shopee 母公司 Sea(https://seagroup.com/)为首家在纽约证券交易所上市的东南亚互联网企业。2015 年底上线以来,Shopee 业务规模迅速扩张,逐步成长为区域内发展最为迅猛的电商平台之一:
前言 京东物流极速的购物体验背后隐藏着怎样的秘诀?仓储和配送时效是其中最为关键的一环。京东物流超强仓配体系,特别是在电商行业中独有的仓储系统,在其中起到了决定性的作用。 当前京东的库房已经遍布全国,京东仓储管理系统(简称WMS系统)是最核心的生产系统,涵盖了从入库,复核,打包,出库、库存和报表等等环节。 而作为系统最后端的数据库,不仅仅承担着存储数据的任务,还是系统可用性的最后一道防线,如何保证仓储系统数据库的高性能和高可用,直接决定了库房生产是否能顺畅进行。 在本篇我们将会详细介绍京东物流仓储系统的数据
Mycat是什么 Mycat - 数据库分库分表中间件,国内最活跃的、性能最好的开源数据库中间件! 一个彻底开源的,面向企业应用开发的大数据库集群 支持事务、ACID、可以替代MySQL的加强版数据库 一个可以视为MySQL集群的企业级数据库,用来替代昂贵的Oracle集群 一个融合内存缓存技术、NoSQL技术、HDFS大数据的新型SQL Server 结合传统数据库和新型分布式数据仓库的新一代企业级数据库产品 一个新颖的数据库中间件产品 Mycat关键特性 支持SQL92标准 支持MySQL、Orac
TDSQL-C 是腾讯云自研的新一代云原生关系型数据库。融合了传统数据库、云计算与新硬件技术的优势,100%兼容 MySQL,为用户提供极致弹性、高性能、高可用、高可靠、安全的数据库服务。实现超百万 QPS 的高吞吐、PB 级海量分布式智能存储、Serverless 秒级伸缩,助力企业加速完成数字化转型。
之前做过一个项目,数据库存储采用的是mysql。当时面临着业务指数级的增长,存储容量不足。当时采用的措施是
这个方案就跟停机迁移一样,步骤几乎一致,唯一的一点就是那个导数的工具,是把现有库表的数据抽出来慢慢倒入到新的库和表里去。但是最好别这么玩儿,有点不太靠谱,因为既然分库分表就说明数据量实在是太大了,可能多达几亿条,甚至几十亿,你这么玩儿,可能会出问题。
表被水平切分后,每个分片表所在的数据库就是一个分片节点。一个分片节点对应一个数据库(mysql数据库)。一个分片节点只能保存每个分片表的一个分片,因为db中不允许出现同名的表。 例如:
上一篇文章《ShardingJdbc分库分表实战案例解析(上)》中我们初步介绍了使用ShardingJdbc实现订单数据分散存储的分库分表方法,在本篇文章中将重点介绍在不停服的情况下实现数据分片存储的在线扩容。具体将以如下两个常见的场景进行演示:1)、尚未进行分库分表的单库单表系统如何平稳的实施分库分表方案;2)、已经实施过分库分表方案的系统,由于数据量的持续增长导致原有分库分表不够用了,需要二次扩容的情况。
首先购买一台云服务器,并在上面安装 MySQL 数据库,然后部署一个 node.js 之类的 HTTP 服务器监听 80 和 443 端口,在 node.js 中连接数据库并实现业务逻辑。最后购买一个域名并配置 DNS 记录指向我们的服务器 IP 地址,这个网站就算搭建完成了。随着不断的努力,我们网站的访问量越来越多。某天早晨当你美滋滋打开网站想要看一眼最新评论时,却发现网站打不开了。。。
网上对这些数据库介绍有些误导,流传各种说法,比如:流传OB基于MySQL、GaussDB 200/300 和openGauss有啥区别,没办法谁让当前国产数据库太多...
检查腾讯云数据库 MySQL 实例的磁盘空间是否接近 6T 上限。6T 的空间受到硬件方面的限制,无法再继续扩容。
温卫斌,就职于中国民生银行信息科技部,目前负责分布式技术平台设计与研发,主要关注分布式数据相关领域。
携程是一家中国领先的在线票务服务公司,从 1999 年创立至今,数据库系统历经三次替换。在移动互联网时代,面对云计算卷积而来的海量数据,携程通过新的数据库方案实现存储成本降低 85% 左右,性能提升数倍。本文讲述携程在历史库场景下,如何解决水平扩容、存储成本、导入性能等痛点,以及对于解决方案的制定和思考过程。
面试官:如何来设计动态扩容的分库分表方案? 面试官心理剖析: 这个问题主要是看看你们公司设计的分库分表设计方案怎么样的?你知不知道动态扩容的方案?
OcceanBase是淘宝开源的一个分布式关系数据库,以下是其官方地址:https://oceanbase.alipay.com/
当数据量持续新增,面临着这样一些需求,两台数据库无法容纳,需要数据库扩容,这里选择2台—扩容到3台的模式,如下图:
| 作者:杨壮壮 ,腾讯PCG运营开发工程师 ,目前主要从事 MDB(MySQL 云管平台)的后台开发与技术运营的工作,是一个做开发的DBA。熟悉腾讯自研数据库TDSQL的架构原理、集群管理维护、内核SQL优化等。MDB团队承载着整个PCG 关系型数据库的管理与运维工作,支撑着腾讯视频、看点等业务稳定运行。 1 Part1 前言 在今年的三月份,我们举办过一届数据库武林大会,在这场活动沙龙中,有辩手犀利地指出,数据库运维的薪资水平和数据库使用人数并不成正比,有数据表明一些小众但强大的数据库,其DBA的平均
MyCat++ 分库分表:以空间换取时间 1.通过查询mysql中的数据库表([1]),和 mycat中配置的schema([2]) 和 rule([3]) 信息,构建一个路由图 并根据路由规则自动创建子表,mycat server 保存着分库分表的元数据信息,这些元数据信息 可根据[1],[2],[3]进行重建; dataBase-hostNode 分配策略;数据库应该分配在哪台mysql服务器上; table-dataBase 分配策略;表应该分到哪个database里。 分配算法:
MySQL 一直是互联网数据内核的主宰,但是在经历从互联网到企业级的转变中,却是困难重重。然而在 2019年,越来越多的企业级客户开始在业务核心中使用 MySQL 数据库,这是一个标志性的转变,代表 MySQL 打开了更广泛的企业市场,而MySQL的技术变革也正在以更快的步伐去满足更广泛的用户需求。
领取专属 10元无门槛券
手把手带您无忧上云