数据湖是一种大规模、可扩展的数据存储和分析解决方案,它可以存储来自不同来源的结构化、半结构化和非结构化数据。数据湖可以帮助企业实现数据整合、数据治理、数据分析和数据共享等目标,从而提高数据价值和业务价值。
数据湖的构建通常需要以下几个步骤:
数据湖的优势包括:
数据湖的应用场景包括:
推荐的腾讯云相关产品和产品介绍链接地址:
作为一个前端开发,你是否有为了切图而焦头烂额的时候,拿到一张psd的时候需要将图片细细分割,这个时候估计会在心里diss一万遍ui设计师了,没事,这个时候,其实你需要的是一款神器,PS切图神器-蓝湖
痛并快乐着,是黄海最近一两年繁忙工作的写照。新能源发电渐成共识与补贴政策即将到期的叠加效应,引发了风电抢装潮。作为上海电气风电集团系统与网络副主任,黄海每天接触的项目多如牛毛,而每个项目的细节又千头万绪。
前不久在 掘金 上看到一篇文章,前端 PS 切图方法,图文详细,相信每个前端都经过这种最原始的切图手法,不禁想起自己以前刚入门那会懒得切图,直接QQ截图,现在想起来真是初生牛犊不怕虎,怎么方便怎么来。。。
腾讯云大数据产品中心副总经理雷小平表示:“伴随着企业对于数据洞察敏捷度要求的不断提升,腾讯云正在不断探索更智能、更灵活、更高性价比的大数据工具。我们看到,数据湖架构已经成为在数据智能时代的新趋势,而云是数据湖最佳的实践场所。腾讯云原生智能数据湖将助力各行各业解决多元化数据分析场景的新需求,更好地激发大数据在企业数字化升级过程中的价值。”
2021 年初,在 InfoQ 全年技术趋势展望中,数据湖与数据仓库的融合,成为大数据领域的趋势重点。直至年末,关于二者的讨论依然热烈,行业内的主要分歧点在于数据湖、数据仓库对存储系统访问、权限管理等方面的把控;行业内的主要共识点则是二者结合必能降低大数据分析的成本,提高易用性。
企业数据量越来越大; 数据类型越来越复杂; 数据管理越来越吃力; 现有的数据仓库技术无法满足海量、多样的数据处理需求 …… 为了帮助企业解决这些苦恼,今天,腾讯云正式发布国内首个云原生智能数据湖产品图谱 简单来说,数据湖就是一个能够把“各种数据”进行集中存储并进行处理分析的系统。 无论是结构化、半结构化、非结构化的数据,对它来说,来者不拒! 来,先上一张图 数据湖在赋予客户更高的数据敏捷度、更优的数据存储分析成本以及更极致的资源弹性能力方面,“超能打”。 数据湖存储:以对象存储COS服务为核心,
导读:数据湖概念的诞生,源自企业面临的一些挑战,如数据应该以何种方式处理和存储。最开始,企业对种类庞杂的应用程序的管理都经历了一个比较自然的演化周期。
随着数据爆炸式增长,如何高效处理和分析海量数据已经成为关键挑战,结合传统数仓与数据湖优势的湖仓一体(Lakehouse)架构崭露头角,成为大数据领域势不可挡的趋势。
Building The Real-time Datalake at ByteDance (00:00:00-00:22:47)
导语 | 云原生数据湖架构以低成本优势推动客户上云,同时云上客户得以低成本撬动更多结构化和非结构化数据的价值,是一场云厂商的自我革命。本文由腾讯大数据专家工程师于华丽在 Techo TVP开发者峰会「数据的冰与火之歌——从在线数据库技术,到海量数据分析技术」的《云原生数据湖新一代数据架构》演讲分享整理而成,为大家详尽介绍云原生数据湖的价值和背景,云原生数据湖架构原则和挑战,同时分析腾讯云数据湖产品,展望腾讯云数据湖解决方案。 点击可观看精彩演讲视频 一、云原生数据湖架构的价值 今天分四个阶段来为大家
导语 | 云原生数据湖致力于扩大公有云市场总量:一方面以低成本优势推动客户上云,另一方面云上客户得以低成本撬动更多结构化和非结构化数据的价值,是一场云厂商的自我革命,本文将为大家洞悉云原生数据湖的神秘面纱,并且首次推出腾讯云的云原生数据湖产品。文章作者:于华丽,腾讯TEG数据平台部研发工程师。 一、云上架构大数据平台的挑战和机遇 选择 Cloud 还是 Local 的诸多讨论和实践中,成本一直是绕不开的话题。“公有云太贵了,一年机器就够托管三五年了”,这基本上是刚开始接触公有云的企业,在进行了详细价格
在当今信息时代,数据被认为是最宝贵的资源之一。企业越来越依赖数据来推动业务决策、改进产品和服务,以及实现创新。因此,构建高效的数据架构变得至关重要。本文将深入探讨如何构建高效的数据湖(Data Lake)并将其与传统数据仓库融合,以满足大规模数据处理的需求。
随着大数据、人工智能、云计算、物联网等数字化技术的普及和广泛应用,传统的数据仓库模式,在快速发展的企业面前已然显的力不从心。数据湖,是可以容纳大量的原始数据的存储库和处理系统,已经成为企业应用大数据的重要工具。数据湖可以更好地支撑数据预测分析、跨领域分析、主动分析、实时分析以及多元化结构化数据分析,可以加速从数据到价值的过程,打造相应业务能力。而有效的数据治理才是数据资产形成的必要条件,同时数据治理是一个持续性过程,也是数据湖逐步实现数据价值的过程。未来在多方技术趋于融合,落地场景将不断创新,数据湖、数据治理或将成为新的技术热点。
旨在最大化其数据资产的企业正在采用可扩展、灵活且统一的数据存储和分析方法。这种趋势是由负责构建与不断变化的业务需求相一致的基础架构的企业架构师推动的。现代数据湖架构通过将数据湖的可扩展性和灵活性与数据仓库的结构和性能优化相结合来满足这一需求。这篇文章提供了一个参考架构,用于理解和实施现代数据湖。
数据仓库适合存储结构化的、信息密度高的、经过处理后的数据。例如我们通过大数据分析得到的关联信息、画像信息等,都可以放在数据仓库中。
这篇博文中提出的建议并不新鲜。事实上许多组织已经投入了数年时间和昂贵的数据工程团队的工作,以慢慢构建这种架构的某个版本。我知道这一点,因为我以前在Uber和LinkedIn做过这样的工程师。我还与数百个组织合作,在开源社区中构建它并朝着类似的目标迈进。
2023 年 9 月 26 日,腾讯大数据团队与 StarRocks 社区携手举办了一场名为“构建新一代实时湖仓”的盛大活动。活动聚集了来自腾讯大数据、腾讯视频、腾讯游戏、同程旅行以及StarRocks 社区的技术专家,共同深入探讨了湖仓一体技术以及其应用实践等多个备受瞩目的话题,观看人数过万。
导读:本文打破有关数据湖的8个错误认知,错误认知包括3方面,还提出了5个小技巧,以构建一个灵活的、可交付业务价值的数据湖。
在这一过程中,作为数字化底座的云,已经不仅仅局限于基础设施角色,更是企业持续创新和精益运营的关键支撑。
数据湖(Data Lake)概念自2011年被推出后,其概念定位、架构设计和相关技术都得到了飞速发展和众多实践,数据湖也从单一数据存储池概念演进为包括 ETL 分析、数据转换及数据处理的下一代基础数据平台。
随着数字化进程不断深入,数据呈大规模、多样性的爆发式增长。为满足更多样、更复杂的业务数据处理分析的诉求,湖仓一体应运而生。在Gartner发布的《Hype Cycle for Data Management 2021》中,湖仓一体(Lake house)首次被纳入到技术成熟度曲线中。
数据爆炸时代已经来临,数据作为企业的核心资产,如何利用好数据对企业来说至关重要,数据湖存储应运而生。腾讯云存储团队技术大牛程力,围绕数据湖加速器GooseFS展开演讲,下面让我们一起回顾下程力老师的精彩演讲内容。今天的主题是数据湖存储方面的内容。整个内容分四个部分:
Onehouse 创始人/首席执行官 Vinoth Chandar 于 2022 年 3 月在奥斯汀数据委员会[1]发表了这一重要演讲。奥斯汀数据委员会是“世界上最大的独立全栈数据会议”,这是一个由社区驱动的活动,包括数据科学、数据工程、分析、机器学习 (ML)、人工智能 (AI) 等。
随着“大数据中心”被列为国家新基建核心项目之一,数据和数据分析变得尤为的重要。对于企业来说,不仅越来越多的业务向以云为中心的基础架构转移,而且对于数据洞察敏捷度的要求也越来越高。这就促使数据分析者和领导者必须采用恰当的工具和流程来应对需求,可利用多个数据源、使用不同的数据技术,快速构建灵活友好的数据架构,解决多元化分析场景的数据需求成为新的趋势。
本文包括七个小节:1、什么是数据湖;2、数据湖的基本特征;3、数据湖基本架构;4、各厂商的数据湖解决方案;5、典型的数据湖应用场景;6、数据湖建设的基本过程;7、总结。受限于个人水平,谬误在所难免,欢迎同学们一起探讨,批评指正,不吝赐教。
在企业人工智能中,有两种主要类型的模型:判别式和生成式。判别式模型用于对数据进行分类或预测,而生成式模型用于创建新数据。尽管生成式 AI 近来占据新闻头条,但企业仍在追求这两种类型的 AI。
作者 | 蔡芳芳 过去几年,数据仓库和数据湖方案在快速演进和弥补自身缺陷的同时,二者之间的边界也逐渐淡化。云原生的新一代数据架构不再遵循数据湖或数据仓库的单一经典架构,而是在一定程度上结合二者的优势重新构建。在云厂商和开源技术方案的共同推动之下,2021 年我们将会看到更多“湖仓一体”的实际落地案例。InfoQ 希望通过选题的方式对数据湖和数仓融合架构在不同企业的落地情况、实践过程、改进优化方案等内容进行呈现。本文,InfoQ 采访了 OPPO 云数架构部部长鲍永成,请他与我们分享 OPPO 引入数据湖和数
自“信创”概念提出以来,国家政策大力支持数据基础软件发展,推动国产基础软件市场快速增长。与此同时,业务侧对数据分析、数据挖掘、数据探索的广泛应用也反推企业升级底层数据架构,通过优化数据引擎支撑数据开发、数据资产管理、数据应用等数据能力建设。国产基础软件发展正当时。
来源:五分钟学大数据 本文约10000+字,建议阅读10+分钟 本文将从历史的角度对数据湖和数据仓库的来龙去脉进行深入剖析。 随着近几年数据湖概念的兴起,业界对于数据仓库和数据湖的对比甚至争论就一直不断。有人说数据湖是下一代大数据平台,各大云厂商也在纷纷的提出自己的数据湖解决方案,一些云数仓产品也增加了和数据湖联动的特性。 但是数据仓库和数据湖的区别到底是什么,是技术路线之争?是数据管理方式之争?二者是水火不容还是其实可以和谐共存,甚至互为补充? 本文作者来自阿里巴巴计算平台部门,深度参与阿里巴巴大数据/数
10年前,Pentaho公司创始人兼CTO詹姆斯·迪克逊(James Dixon)在他的博客中第一次提出“数据湖”(Data Lake)的概念;10年后的今天,在业界“数据中台”大火的时代背景下,再来讨论“数据湖”,别有一番风味。
导读:随着近几年数据湖概念的兴起,业界对于数据仓库和数据湖的对比甚至争论就一直不断。有人说数据湖是下一代大数据平台,各大云厂商也在纷纷的提出自己的数据湖解决方案,一些云数仓产品也增加了和数据湖联动的特性。
2019年4月24日在美国旧金山召开的 Spark+AI Summit 2019 会上,Databricks 的联合创始人及 CEO Ali Ghodsi 宣布将 Databricks Runtime 里面的 Delta Lake 基于 Apache License 2.0 协议开源。Delta Lake 是一个存储层,为 Apache Spark 和大数据 workloads 提供 ACID 事务能力,其通过写和快照隔离之间的乐观并发控制(optimistic concurrency control),在写入数据期间提供一致性的读取,从而为构建在 HDFS 和云存储上的数据湖(data lakes)带来可靠性。Delta Lake 还提供内置数据版本控制,以便轻松回滚。目前 Delta Lake 项目地址为 https://delta.io/,代码维护地址 https://github.com/delta-io/delta。
本文的目的是构建数据湖,并提供适应企业数据策略的背景信息。咨询公司和提供商提出的意见相互矛盾,因此,这些信息历来一直不透明,令人困惑。
随着“大数据中心”被列为国家新基建核心项目之一,数据和数据分析变得尤为重要。对于企业来说,不仅越来越多的业务向以云为中心的基础架构转移,而且对于数据洞察敏捷度的要求也越来越高。这就促使数据分析者和领导者必须采用恰当的工具和流程来应对需求,可利用多个数据源、使用不同的数据技术,快速构建灵活友好的数据架构,解决多元化分析场景的数据需求成为新的趋势。 数据湖正是在这样的背景下应运而生,而云是数据湖最佳的实践场所。国内各大云厂商也聚焦数据湖,将云计算技术与数据湖技术结合,进一步发挥云自有的弹性扩张、灵活部署
机器之心发布 机器之心编辑部 国产唯一的开源数据湖存储框架 LakeSoul 近期发布了 2.0 升级版本,让数据智能触手可及。 湖仓一体作为新一代大数据技术架构,将逐渐取代单一数据湖和数仓架构,成为大数据架构的演进方向。当前已有 DeltaLake、Iceberg、Hudi 等国外开源的数据湖存储框架。LakeSoul 是数元灵科技研发的,国产唯一的开源数据湖存储框架,并于近期发布了 2.0 升级版本。本文将结合大数据架构的演变历史及业务需求,深度剖析国产唯一开源湖仓一体框架 LakeSoul 带来的现
华米科技是一家基于云的健康服务提供商,拥有全球领先的智能可穿戴技术。在华米科技,数据建设主要围绕两类数据:设备数据和APP数据,这些数据存在延迟上传、更新频率高且广、可删除等特性,基于这些特性,前期数仓ETL主要采取历史全量+增量模式来每日更新数据。随着业务的持续发展,现有数仓基础架构已经难以较好适应数据量的不断增长,带来的显著问题就是成本的不断增长和产出效率的降低。
后来,为了更有效率的记事和工作,数据库出现了。数据库核心是满足快速的增删改查,应对联机事务。
数据湖概念的诞生,源自企业面临的一些挑战,如数据应该以何种方式处理和存储。最开始的时候,每个应用程序会产生、存储大量数据,而这些数据并不能被其他应用程序使用,这种状况导致数据孤岛的产生。随后数据集市应运而生,应用程序产生的数据存储在一个集中式的数据仓库中,可根据需要导出相关数据传输给企业内需要该数据的部门或个人。然而数据集市只解决了部分问题。剩余问题,包括数据管理、数据所有权与访问控制等都亟须解决,因为企业寻求获得更高的使用有效数据的能力。为了解决前面提及的各种问题,企业有很强烈的诉求搭建自己的数据湖,数据湖不但能存储传统类型数据,也能存储任意其他类型数据,并且能在它们之上做进一步的处理与分析,产生最终输出供各类程序消费。
导读:本文将介绍过去15年中,网易大数据团队在应对不断涌现的新需求、新痛点的过程中,逐渐形成的一套逻辑数据湖落地方法。内容分为五部分:
Apache Hudi[1](简称“Hudi”)于 2016 年在 Uber 创建,旨在将数据仓库功能引入数据湖以获取准实时的数据,开创了事务数据湖架构,现已在所有垂直行业中进入主流。在过去的 5 年里,围绕该项目已发展出一个丰富多彩的社区[2],并迅速创新。Hudi 为数据湖带来了类似数据仓库及数据库的功能,并使诸如分钟级数据新鲜度、优化存储、自我管理表等新事物直接在数据湖中成为可能。来自世界各地的许多公司都为 Hudi 做出了贡献,该项目在不到两年的时间内增长了 7 倍,每月下载量接近 100 万次。我很荣幸目睹了亚马逊[3]、字节跳动、Disney+ Hotstar[4]、GE Aviation[5]、Robinhood[6]、沃尔玛[7]等更多企业采用并构建基于 Apache Hudi 的 EB (Exabyte) 级数据湖,来支持其关键商业应用。紧跟潮流,我很高兴能在这里分享过去几个月我们利用 Hudi 正在构建的公司和产品 - Onehouse。为了启动我们的征程,我们获得了 Greylock Ventures 和 Addition 的 8 百万美元的种子轮投资——这些投资公司在培育企业数据初创公司方面拥有出色的业绩记录和丰富的经验。以下是我们的旅程故事和对未来的愿景。
数据湖是一个集中的存储库,允许您以任何规模存储所有结构化和非结构化数据。您可以按原样存储数据,而不必首先构造数据,并运行不同类型的分析—从仪表板和可视化到大数据处理、实时分析和机器学习,以指导更好的决策。
与传统的数据架构要求整合、面向主题、固定分层等特点不同,数据湖为企业全员独立参与数据运营和应用创新提供了极大的灵活性,并可优先确保数据的低时延、高质量和高可用,给运营商数据架构优化提供了很好的参考思路。
近期,《长津湖》电影将大家带回了抗美援朝那年,当画面一帧帧浮现在眼前时,让人忍不住追忆过去、思念故人… 长津湖战役中,中国解放军奋勇杀敌的画面,实在是赚足了小编的眼泪ಥ_ಥ 战乱夺走了多少条生命,拆散了多少个家庭?让我们向中国军人致敬!!!
作为程序员,我们写的大多数商业项目,往往都需要用到大量的数据。计算机的内存,可以实现数据的快速存储和访问。
打通数据孤岛,这一响亮的口号,无数大数据公司,将其作为金字招牌。然而,数据孤岛问题真的得到了解决吗?
大数据技术的发展历程中,继数据仓库、数据湖之后,大数据平台的又一革新技术——湖仓一体近年来开始引起业内关注。市场发展催生的数据管理需求一直是数据技术革新的动力。比如数据仓库如何存储不同结构的数据?数据湖又如何避免因为缺乏治理导致的数据杂乱现象?今天的文章想跟大家具体聊聊我们的数栈如何解决这些问题。
Apache Hudi是一个开源数据湖管理平台,用于简化增量数据处理和数据管道开发,该平台可以有效地管理业务需求,例如数据生命周期,并提高数据质量。Hudi的一些常见用例是记录级的插入、更新和删除、简化文件管理和近乎实时的数据访问以及简化的CDC数据管道开发。
这是最经典的数据仓库模型,模型上面的不多说,可以参考数据仓库理论。从技术角度上来说,
Pentaho首席技术官James Dixon创造了“数据湖”一词。它把数据集市描述成一瓶水(清洗过的,包装过的和结构化易于使用的)。
领取专属 10元无门槛券
手把手带您无忧上云