数据结构为数据组织、管理和存储提供了一种有效的方法,同时还提供了对数据执行操作的方法。选择正确的数据结构可以使代码更有效率,更易于理解和维护。以下是数据结构对编程的一些意义:
一、概要 我们在教科书上所学的所有数据结构都是最常规、最精简的数据结构,即便如此,基本上所有能遇上的问题都能用这些数据结构来解决。但是有一些特殊的问题,需要对现有的数据结构进行些许改造才能应付,这种改造是很细微的,且改造所添加的信息必须能被该数据结构上的常规操作所更新和维护。比如在链表上添加一个数据域来记录结点的位置、在一棵二叉搜索树上添加一个指针域来记录结点的后继指针,等等。 本章介绍两种通过扩张红黑树构造出的数据结构,一种是动态顺序统计树;另一种是区间树。然后介绍了如何扩张现有数据结构的一个通用
PHP数据结构(二十五)——并归排序 (原创内容,转载请注明来源,谢谢) 一、概述 并归排序是将两个或两个以上的有序表组合成一个新的有序表。采用并归的思想进行排序的方式如下: 假设初始序列含有n个记录,则看成是n个有序的子序列,每个子序列长度是1,然后两两合并,得到n/2个长度为2或者1(元素总数是奇数时,最后一个元素是单个的)的子序列。然后再进行归并,直至归并成一个数组。此方法也成为2-路并归排序。 二、算法 并归排序有两个核心——拆分、合并。 1)对于拆分,需要把数组拆成仅含一
内容涵盖15大章节:综述,数组,简单排序,栈和队列,链表,递归,高级排序,二叉树,红-黑树,2-3-4树和外部存储,哈希表,堆,图,带权图,应用场合,共30W字。
PHP数据结构(十九)——B+树 (原创内容,转载请注明来源,谢谢) 一、概述 B+树是B树的变种,在数据库系统、文件系统等方面,B+树的运用非常广泛。 1、B+树的要求 1)有n棵子树的结点中含有n个关键字。(B树是n-1个关键字。) 2)所有的叶子结点中包含了全部关键字的信息,及指向含有这些关键字记录的指针,且叶子结点本身依关键字的大小自小而大的顺序链接。这点意味着,叶子节点存在指向相邻叶子节点的指针。这个是在树形的数据结构中非常特殊的地方,使得B+
几乎所有的问题都需要面试者对数据结构有深刻的理解。无论你是初入职场的新兵(刚从大学或者编程培训班毕业),还是拥有几十年经验的职场老鸟。
数据结构作为计算机科学和编程的基础之一,对于每位想要在编程领域中取得成功的人来说,都是必不可少的知识。在这篇文章中,我们将为你提供一个完整的学习路径,帮助你逐步学习和掌握数据结构。
瑞士计算机科学家Niklaus Wirth在1976年写了一本书,名为《算法+数据结构=编程》。
国外 IT 教育学院 Educative.io 创始人 Fahim ul Haq 写过一篇过万赞的文章《The top data structures you should know for your next coding interview》,总结了程序员面试中需要掌握的 8 种数据结构知识。
许多年后,这个等式仍被奉为真理。这就是为什么在面试过程中,需要考察软件工程师对数据结构的理解。
40多年后,这个等式仍被奉为真理。这就是为什么在面试过程中,需要考察软件工程师对数据结构的理解。
PHP数据结构(十六)——B树 (原创内容,转载请注明来源,谢谢) 一、概述 B树在很多地方被称为“B-树”,因为B树的原英文名称为B-tree,很多人把其译作B-树,但是它的正确读法是B树,因此下面都用B树来表示B-tree。B树是一种多路平衡查找树,其对于加快查找速度具有重要意义。 1、定义 一棵m阶的B树(不是指m叉树,m是这棵树的度,下同),或者是空树,或者是满足下列特性的m叉树: 1)树中每个节点至多m个子树,m-1个关键字。 2)根节点若不
🔹 链表(List):用于保存Twitter的信息流。 🔹 栈(Stack):支持文字编辑器的撤销/重做功能。 🔹 队列(Queue):用于保存打印作业,或者在游戏中发送用户操作。 🔹 堆(Heap):用于任务调度。 🔹 树(Tree):用于保存HTML文档,或者用于人工智能决策。 🔹 后缀树(Suffix Tree):用于在文档中搜索字符串。 🔹 图(Graph):用于跟踪社交关系,或者进行路径搜索。 🔹 R树(R-Tree):用于寻找最近的邻居。 🔹 顶点缓冲区(Vertex Buffer):用于向GPU发送渲染数据。
PHP数据结构(十四) ——键树(双链树) (原创内容,转载请注明来源,谢谢) 一、概念 键树又称为数字查找树,该树的度>=2,每个节点不是存储关键字,而是存储组成关键字的一个字符或数值的一个数字。
前几天,有个朋友向我推荐了一个github 的开源项目https://github.com/OhBonsai/RedisTree, 可以用redis 直接读写polytree 的数据结构,挺有意思的。那么, 什么是polytree 呢?
PHP数据结构(十八)——直接插入排序 (原创内容,转载请注明来源,谢谢) 一、概述 插入排序分为直接插入排序、其他插入排序、希尔排序。其他插入排序又分为折半插入排序、2-路插入排序。 二、直接插入排序 直接插入排序是一种最简单的排序方法,时间复杂度O(n2),实现方式是将一个记录插入到已经排序好的有序表,得到一个新的、记录数增加1的有序表。 插入排序的核心思想,即假设原数组的第0位至第i-1位都是有序排列的(如从小到大),当第i位出现顺序错误(如第i位的值小于第i-1位),则需要进行插入排序。 1、
PHP数据结构(二十一)——希尔排序 (原创内容,转载请注明来源,谢谢) 一、概述 希尔排序,又称缩小增量排序,也属于插入排序类方法,时间上有较大改进。前面叙述的插入排序方法的时间复杂度都是O(n2),当待排序记录都是正序时,时间复杂度提高到O(n)。 希尔排序的基本思想是:先将整个待排记录序列分割成为若干子序列分别进行直接插入排序,待整个序列中的记录基本有序时,再对全体进行一次插入排序。 二、算法 希尔排序实质上就是跳跃版的直接插入排序,其每次都设定一个不同的增量,如第一次增量是5、第二次增量是3
PHP数据结构(十三) ——动态查找表(二叉排序树) (原创内容,转载请注明来源,谢谢) 一、概念 1、动态查找表特点 当对动态查找表进行查找时,如果查找成功,会返回查找结果;如果查找失败,会对动态查找表插入查找结果,并且根据各类动态查找表的性质,对表进行动态调整。 2、二叉排序树(又称二叉查找树) 二叉排序树或者是一棵空树,或者满足以下特性: 1)若左子树非空,则左子树的所有节点小于根节点; 2)若右子树非空,则右子树的所有节点大
在写STL的时候,我就意识到了缺少了一篇数据结构。 提到数据结构,很多学生可能会想到学校里上的数据结构的课,教的那些数组、链表、栈、队列、树、图等
可以简单理解为: 当一个一维的链表的分叉有两个的时候, 它就变成了一个二维的数据结构,相当于树结构
简而言之,数据结构是一个以特定形式存储数据的容器。这种“形式”允许数据结构在某些操作中更加高效。
关于 B 树与 B+ 树,网上有一个比较经典的问题:为什么 MongoDb 使用 B 树,而 MySQL 索引使用 B+ 树?
本文是对整个数据结构及算法的总体框架认识,旨在帮助读者自上向下,从整体到细节,从抽象到具体地看待数据结构。希望通过本文读者能在对数据结构的学习和理解上能有更高层的认识。
在计算机科学领域,数据结构是构建算法和程序的基础。在初级阶段,我们已经掌握了一些基本的数据结构,如数组、链表、栈和队列等。然而,在实际应用中,涉及到大规模数据处理、高效搜索以及复杂关系建模等场景,我们需要更高级的数据结构来满足这些需求。在这篇文章中,我们将深入学习两个重要的高级数据结构:平衡树和图的高级算法。
数据结构是一种组织和存储数据的方式,它涉及如何在计算机中存储和访问数据的方法和技术。数据结构可以用来解决不同类型的问题,包括搜索、排序、插入和删除等操作。常见的数据结构包括数组、链表、栈、队列、树、图等。不同的数据结构有不同的特点和适用场景,选择合适的数据结构可以提高算法的效率和性能。
今天分享一篇小吴的读者 labuladong 的投稿,文章里面提到的框架思维感觉很有用,希望对大家学习数据结构有帮助。
数据结构与算法,是大学中计算机相关专业里的一门必修的基础课,当时学习的时候并不能列其中的知识点,毕业之后随着对计算机专业知识的了解加深,才意识到其重要性,今天我就来研究一番。
PHP数据结构(二十二)——快速排序 (原创内容,转载请注明来源,谢谢) 一、概述 前面的插入排序,都是以移动的方式进行排序。快速排序,则是以交换的方式进行排序。 二、冒泡排序 提到交换的方式进行排序,首先可以提到冒泡排序。 1、算法 冒泡排序是逐个进行比较再进行交换的排序方式,假设是以从小到大的顺序排列。 1)先用第一个数和第二个数比较,如果第一个数比较大,则和第二个数进行互换,否则两个数保持不变。 2)再用第二个数与第三个数比较,直至第n-1个数与第n个数进行比较。这称为一轮的冒
本文是对整个数据结构及算法的总体框架认识,旨在帮助读者自顶向下,从整体到细节,从抽象到具体地看待数据结构。希望通过本文读者能在对数据结构的学习和理解上能有更高层的认识。
PHP数据结构(二十三)——选择排序 (原创内容,转载请注明来源,谢谢) 一、概述 选择排序的基本思想,是每一趟在n-i+1(i=1,2…n-1)个记录中选取关键字最小的记录作为第i个记录。选择排序分为简单选择排序、树形选择排序、堆排序。 二、简单选择排序 简单选择排序,即完全按照上述的说法进行排序。时间复杂度O(n2)。由于比较简单,不具体描述。 1、算法 1)遍历整个数组,找到最小值放置于第一个位置。 2)遍历从第二个位置至末尾的数组,找到最小值放在第二个位置。
在计算机科学领域,数据结构和算法是构建强大和高效程序的关键要素。随着问题的复杂性不断增加,对于更高级的数据结构和算法的需求也逐渐增加。本文将深入学习和探索一些高级数据结构和复杂算法,包括B+树、线段树、Trie树以及图算法、字符串匹配算法和近似算法等。
树(Tree)是一种重要的数据结构,它在计算机科学中被广泛应用,用于构建层次结构、组织数据和解决各种问题。本文将详细介绍Python中树数据结构的使用,包括二叉树、二叉搜索树、平衡二叉树等,并提供示例代码来说明它们的用途。
PHP数据结构(十七)——内部排序综述 (原创内容,转载请注明来源,谢谢) 一、稳定性 假设Ki=Kj(1<=i,j<=n,i!=j),且排在序列前的序列中Ri领先于Rj(即i>j)。 1)若在排序后的序列中,Ri必然仍领先于Rj,则称所用的排序方法是稳定的。 2)如果Ri可能出现在Rj之后的情况,则称所用的排序方法是不稳定的。 用一句话描述,就是原数组中两个相同的数字,一个在前一个在后,经过某种排序后(无论重新使用该方法排序多少次),仍一个在前一个在后,则称为稳定。
数据结构这门课程是计算机相关专业的基础课,数据结构指的是数据在计算机中的存储、组织方式。
同学A:...不知道同学B:因为索引其实就是一种优化查询的数据结构,比如Mysql中的索引是用B+树实现的,而B+树就是一种数据结构,可以优化查询速度,可以利用索引快速查找数据,所以能优化查询。
今天,我给大家介绍一种面试中经常被问到数据结构树。大家可能也经常会听到二叉树、二叉查找树、AVL平衡二叉树、B树、 等等,那今天我给大家一次性讲清楚。
在408中,其中数据结构和组成原理各占45分,操作系统占35分,计算机网络占25分。其中数据结构占的分最多,也是最难的一科。
数据结构是计算机存储、组织数据的方式。在工作中,我们通常会直接使用已经封装好的集合API,这样可以更高效地完成任务。但是作为一名程序员,掌握数据结构是非常重要的,因为它可以帮助我们更好地理解和设计算法,从而提高程序的效率和可靠性。
要解释这个问题,其实不单单要从数据结构的角度出发,还要考虑磁盘 I/O 操作次数,因为 MySQL 的数据是存储在磁盘中的嘛。
数据结构是计算机科学中的一个重要概念,它描述了数据之间的组织方式和关系,以及对这些数据的访问和操作。常见的数据结构有:数组、链表、栈、队列、哈希表、树、堆和图。
今天分享一个开源项目,里面汇总了程序员技术面试时需要了解的 算法和数据结构知识,并且还提供了相应的代码,目前 GitHub 上标星 35000 star,值得一看。
数据结构和算法是计算机科学的两个核心概念,它们在计算机程序的设计和性能优化中起着至关重要的作用。理解数据结构和算法如何融合到实际应用中,可以帮助开发者编写更高效、更可维护的代码。本文将深入探讨数据结构和算法的奥秘,介绍它们在实际应用中的应用,并提供代码示例以帮助读者更好地理解这一主题。
来源:专知本文为书籍介绍,建议阅读5分钟理解数据结构如何起作用对于有效地使用它们至关重要。 这本通俗易懂且有趣的书通过数据结构的视角深入介绍了计算思维——数据结构是任何编程工作的关键组成部分。通过图表、伪代码和幽默的类比,你将了解数据结构如何驱动算法操作,不仅可以了解如何构建数据结构,还可以了解如何以及何时使用它们。 本书将为你提供15种以上关键数据结构的实现和使用的强大背景知识,从栈、队列、缓存到布隆过滤器、跳跃表和图。通过在咖啡馆排队来掌握链表,通过编目夏季奥运会的历史来掌握散列表,通过整齐地整理厨房
我在上篇文章 Apache Pulsar 的架构设计 中介绍了 Pulsar 存算分离的架构,其中 broker 只负责计算,由 BookKeeper 负责底层的存储,我还画了这样一张图说明 BookKeeper 读写分离的设计:
自考学习时期又来了,首先学习的第一本自考科目是“数据结构导论”,刚拿到这本书的时候一头雾水,还不明白这本书讲解的是什么,通过三遍读书法(第一遍)的学习,对“数据结构导论”有了一定的认识,并且总结了下来。
前面的文章我们知道,libra会把所有的数据都存储在账本中。为了方便业务逻辑和数据的校验,这个存储是以特定的数据结构来实现的,这里我们叫做验证的数据结构。
Java是一种广泛应用的编程语言,拥有强大的数据结构库,使程序员能够轻松地处理各种数据和算法。本文将深入探讨Java中的数据结构,从基础概念到高级应用,包括示例代码和实际用例。
领取专属 10元无门槛券
手把手带您无忧上云