在做ocr项目时候,会涉及到两个部分,文字区域检测与文字图像识别。在之前的文章中有
文档是重要的信息存储载体之一,人们每天接触和使用文档的频率也越来越高。相对应地,用户对文档处理和图像内容的安全要求逐渐提升,智能文档技术面临的挑战也更大。
哪里下载Mac电脑图片提取文字Text Scanner for Mac 完美兼容版安装包啊,Text Scanner for Mac是一款强大的文本识别工具,由iFotosoft公司开发。这个应用程序使用户能够在Mac上轻松地将纸质文件转换为文本文件,无论何时何地,都可以快速准确地识别和提取文本内容。
本文介绍了如何通过光学字符识别(OCR)技术来识别收据中的文本内容,并探讨了在识别过程中可能遇到的文本噪声问题,以及如何解决这些问题。同时,文章还介绍了如何使用CNN和LSTM等深度学习技术来提高文本识别的准确率。
光学字符识别技术(OCR)目前被广泛利用在手写识别、打印识别及文本图像识别等相关领域。小到文档识别、银行卡身份证识别,大到广告、海报。因为OCR技术的发明,极大简化了我们处理数据的方式。
OCR全称Optical Character Recognition,即光学字符识别,最早在1929年被德国科学家Tausheck提出,定义为将印刷体的字符从纸质文档中识别出来。现在的OCR,狭义上指对输入扫描文档图像进行分析处理,识别出图像中文本信息。而随着OCR技术的日益发展,人们已不再仅仅满足于文档或书本上的文本,开始将目标转移到现实世界场景中的文本,这被称为场景文本识别(Scene Text Recognition,STR)。
其中研究文本检测的最多,共 7 篇,包括已经非常知名的PSENet,还有最近异常火爆的CRAFT。
大数据文摘作品 去年,AI Challenger(以下简称AIC)全球挑战赛吸引了来自65个国家近万团队参赛。 今年的AIC预热赛零样本学习(zero-shot learning)竞赛即日起开始。 零样本学习竞赛同样发布大规模图像属性数据集,包含78017张图片、230个类别、359种属性。 与目前主流的用于zero-shot learning的数据集相比,图片量更大、属性更丰富、类别与ImageNet重合度更低。 经典零样本学习方法介绍 创新工场AI工程院运营副总裁吴卓浩表示,因为在很多情况下人们难以获得
---- 新智元报道 编辑:桃子 Ellie 【新智元导读】微软亚研院发布了仅16亿参数的多模态大型语言模型KOSMOS-1,不仅能看图回答,还搞定了瑞文智商测试。 大模型的卷,已经不睡觉都赶不上进度了...... 这不,微软亚研院刚刚发布了一个多模态大型语言模型(MLLM)—— KOSMOS-1。 论文地址:https://arxiv.org/pdf/2302.14045.pdf 论文题目Language Is Not All You Need,还得源于一句名言。 文中有这么一句话,「我语言的
学习驱动神经网络兴起的主要技术趋势,了解现今深度学习在哪里应用、如何应用。 8 月 8 日,吴恩达正式发布了 Deepleanring.ai——基于 Coursera 的系列深度学习课程,但在中国无法访问这套课程(除非你连V**),还有Coursera中是英文授课,就有点尴尬。幸好,之后,吴恩达和网易合作,将课程内容免费放到网易的教育平台上.所以,终于有机会学这门课了!特记下笔记,以备忘! 可以先看一下人工智能的完整学习图 有一起学习的同学,可以联系我,一起进步哦!!! Cour
✎ 文 | 常江龙 在图像分析应用中,海量图片样本的有效自动化过滤是一项重要的基础工作。本文介绍一种基于多重算法过滤的处理方案,能够自动提取有效图像样本,极大减少人工标注的工作量。 作者:常江龙,苏宁云商IT总部资深算法专家。拥有多年的图像及视觉相关算法研发经验,目前专注于基于深度学习的图像内容分析算法平台的开发及优化,面向商品、人脸、OCR等图像算法实用技术领域。 责编:何永灿,欢迎人工智能领域技术投稿、约稿、给文章纠错 背景及问题描述 深度学习技术在计算机视觉领域取得了巨大的成功,其标志性事件之一就是
前言 文字识别是计算机视觉研究领域的分支之一,归属于模式识别和人工智能,是计算机科学的重要组成部分 本文将以上图为主要线索,简要阐述在文字识别领域中的各个组成部分。 一 ,文字识别简介 计算机文字识别,俗称光学字符识别,英文全称是Optical Character Recognition(简称OCR),它是利用光学技术和计算机技术把印在或写在纸上的文字读取出来,并转换成一种计算机能够接受、人又可以理解的格式。OCR技术是实现文字高速录入的一项关键技术。 在OCR技术中,印刷体文字识别是开展最早,技术
近期,2023年中国模式识别与计算机视觉大会(PRCV)在厦门成功举行。大会由中国计算机学会(CCF)、中国自动化学会(CAA)、中国图象图形学学会(CSIG)和中国人工智能学会(CAAI)联合主办,多媒体可信感知与高效计算教育部重点实验室、厦门大学人工智能研究院、厦门大学信息学院承办,是国内模式识别和计算机视觉领域的学术盛会。
基于分割的识别算法是自然场景文本识别算法的一个重要分支(Wang 等,2012;Bissacco 等,2013;Jaderberg 等,2014),通常包括3 个步骤:图像预处理、单字符分割和单字符识别。基于分割的自然场景文本识别算法通常需要定位出输入文本图像中包含的每个字符的所在位置,通过单字符识别器识别出每一个字符,然后将所有的字符组合成字符串序列,得到最终的识别结果。
像Google和Microsoft这样的大公司在图像识别方面已经超越了人类基准[1,2]。平均而言,人类大约有5%的时间在图像识别任务上犯了错误。截至2015年,微软的图像识别软件的错误率达到4.94%,与此同时,谷歌宣布其软件的错误率降低到4.8%[3]
在日常生活、工作中, 受限于拍照技术、拍摄条件等制约,得到的文本图像往往存在光照不均、角度倾斜、文字模糊等情况。这种低质量的文本图像不仅不利于保存和后续研究,也不利于光学字符识别。为了解决以上问题,特别调研了业内相关的产品,发现腾讯云AI的文本图像增强能力可以很好的打造一个掌上扫描仪。
导语 | 2021年1月, 微信发布了微信8.0, 这次更新支持图片文字提取的功能。用户在聊天界面和朋友圈中长按图片就可以提取图片中文字,然后一键转发、复制或收藏。图片文字提取功能基于微信自研OCR技术,本文将介绍微信OCR能力是如何落地文字提取业务的。文章作者:伍敏慧,腾讯WXG研发工程师。 一、背景 微信8.0上线了图片提取文字的功能,用户在聊天界面和朋友圈中如果想提取图像中的文字,不用再辛苦打字了,只要简单几个步骤,就可以拿到图片中的文字内容,超级方便实用。 图1 微信客户端提取图片中的
现在很多搜索引擎都是基于图片的文本标签,但是我们的世界每天产生不计其数的照片,很多都没有标记直接传到了网上,给图片搜索带来了很多混乱。
一直以来,大家都在盛传深度学习是工程师的风口,但是对于深度学习和行业的联系却很少被提及。
为了缓解上述问题,有研究者提出了一种简单而高效的方法,称为保持增强(KeepAugment),以提高增强图像的保真度。其主要思想是首先使用显著性map来检测原始图像上的重要区域,然后在增强过程中保留这些信息区域。这种信息保护策略使我们能够生成更忠实的训练示例。
数据增强(DA)是训练最先进的深度学习系统的必要技术。在今天分享中,实证地表明数据增强可能会引入噪声增强的例子,从而在推理过程中损害非增强数据的性能。
俗称光学字符识别,英文全称是Optical Character Recognition(简称OCR),它是利用光学技术和计算机技术把印刷体或手写体文本进行读取识别,转化成计算机和人都能够识读的格式。此间OCR技术是关键一环。OCR技术中,印刷体的文本识别是最成熟的一个,因其开展最早。早在1929年就被欧美国家利用来处理大量的报刊杂志、文件和单据报表等。经过40多年的发展和完善,文本识别技术更加成熟,逐步实现了信息处理的“电子化”。
作者:宋天龙 链接:https://www.zhihu.com/question/63383992/answer/222718972 来源:知乎
选自arXiv 机器之心编译 参与:李泽南、路雪 在图像识别任务中,模型的训练一直非常依赖于标注数据,同时训练结果难以泛化。香港科技大学与卡耐基梅隆大学的研究者们最近发表的研究提出时间动态图 TD-Graph LSTM 试图解决这些问题,他们的新方法也刷新了视频目标检测的业内最佳水平。该论文已入选即将在 10 月底举行的 ICCV2017 大会。 随着数据驱动方式在图像识别上的不断发展,人们对于扩大目标检测系统规模的兴趣越来越大。然而,与分类任务不同,用不同的类与边界框完整标注对象实例的方法几乎是不可扩展
图像文字作为信息传递的重要载体,图像文字识别对于高效化办公,场景理解等有着重要的意义。
欢迎关注“ 计算机视觉研究院 ” 计算机视觉研究院专栏 作者:Edison_G 数据增强(DA)是训练最先进的深度学习系统的必要技术。在今天分享中,实证地表明数据增强可能会引入噪声增强的例子,从而在推理过程中损害非增强数据的性能。 长按扫描二维码关注我们 一、前言&简要 为了缓解上述问题,有研究者提出了一种简单而高效的方法,称为保持增强(KeepAugment),以提高增强图像的保真度。其主要思想是首先使用显著性map来检测原始图像上的重要区域,然后在增强过程中保留这些信息区域。这种信息保护策略使我
如今,智慧办公是企业办公领域数字化转型的题中之义。作为国内最早开发的软件办公系统之一,金山办公如何应用深度学习实现复杂场景文档图像识别和技术理解?本文将从复杂场景文档的识别与转化、非文本元素检测与文字识别、文本识别中的技术难点等多个方面进行深度解析。 作者 | 金山办公CV技术团队 出品 | 新程序员 在办公场景中,文档类型图像被广泛使用,比如证件、发票、合同、保险单、扫描书籍、拍摄的表格等,这类图像包含了大量的纯文本信息,还包含有表格、图片、印章、手写、公式等复杂的版面布局和结构信息。早前这些信息均采用
我们需要从任何图像(包含文本)检测文本区域,这个图像可以是任何具有不同背景的东西。在检测到图像后,我们也必须识别它。
在计算机视觉领域,图像识别这几年的发展突飞猛进,但在进一步广泛应用之前,仍然有很多挑战需要我们去解决。本文中,微软亚洲研究院视觉计算组的研究员们为我们梳理目前深度学习在图像识别方面所面临的挑战以及具有未来价值的研究方向。
基于深度学习的机器学习方法已经在语音、文本、图像等单一模态领域取得了巨大的成功,而同时涉及到多种输入模态的多模态机器学习研究有巨大的应用前景和广泛的研究价值,成为了近年来的研究热点。
时序连接序列(CTC)算法早期由Graves等人(2016)提出,用以训练循环神经网络(Cho 等,2014;Hochreiter 和Schmidhuber,1997),并直接标记未分割的特征序列。CTC 算法在多个领域均证明了它的优异性能,例如语音识别(Graves 等,2013;Graves 和Jaitly,2014)和联机手写文本识别(Graves等,2009;Graves,2012)。
前面介绍了「AI产品经理需要具备的能力和对数据、算法需要理解的程度」、「机器学习的实际训练过程」,后面将围绕AI产品在当前环境下的热门应用来进行探讨,涵盖了语音识别、图像识别、NLP自然语言处理、知识图谱等产品化落地的场景。
原文地址:https://en.wikipedia.org/wiki/Intelligent_personal_assistant 当首次介绍深度学习时,我们认为它是一个要比机器学习更好的分类器。或者,我们亦理解成大脑神经计算。 第一种理解大大低估了深度学习构建应用的种类,而后者又高估了它的能力,因而忽略了那些不是一般人工智能应用的更现实和务实的应用。 最好最自然的理解应该是从人机交互角度来看待深度学习应用。深度学习系统似乎具备近似于生物大脑的能力,因此,它们可以非常高效地应用于增强人类或者动物已经可以执
最近在做一件比较 evil 的事情——验证码识别,以此来学习一些新的技能。因为我是初学,对图像处理方面就不太了解了,欲要利吾事,必先利吾器,既然只是做一下实验,那用 Python 来作原型开发再好不过了。在 Python 中,比较常用的图像处理库是 PIL(Python Image Library),当前版本是 1.1.6 ,用起来非常方便。大家可以在 http://www.pythonware.com/products/pil/index.htm 下载和学习。
本文是我的毕业设计基于Tensorflow的深度学习与研究的番外篇,在这篇文章中,我将解决以下两个问题:
近日华南理工大学金连文老师组在文本识别领域又出牛文,提出一种基于像素级不规则文本纠正的识别新算法MORAN(Multi-Object Rectified Attention Network),刷新了多个OCR数据集的最高精度,并将其开源了!
作者 | Priya Dwivedi 编译 | 聂震坤 用大数据干大事! 目前有很多种图像识别的方案,而 Google 近日最近发布了其最新的 Tensorflow 物理检测接口(Object D
手写数字识别问题 图像识别是深度学习众多主流应用之一,手写数字识别则是图像识别范畴简化版的入门学习经典案例。在TensorFlow的官方文档中,把手写数字识别“MNIST”案例称为机器学习项目的“Hello World”。从这个案例开始,我们的连载才开始有了一些“人工智能”的感觉。 问题的描述是这样: 有一批手写数字的图片,对应数字0-9。通过机器学习的算法,将这些图片对应到文本字符0-9。用通俗的话来说,就是计算机认出了图片上面手写的数字。 从问题描述可见这个机器学习项目的“Hello World”
今天给大家介绍的是以色列科技大学Aviad Aberdam等人发表在CVPR2021上的一篇文章 ”Sequence-to-Sequence Contrastive Learning for Text Recognition”。作者在这篇文章中提出了一种用于视觉表示的序列到序列的对比学习框架 (SeqCLR)用于文本识别。考虑到序列到序列的结构,每个图像特征映射被分成不同的实例来计算对比损失。这个操作能够在单词级别从每张图像中提取几对正对和多个负的例子进行对比。为了让文本识别产生有效的视觉表示,作者进一步提出了新的增强启发式方法、不同的编码器架构和自定义投影头。在手写文本和场景文本数据集上的实验表明,当文本解码器训练学习表示时,作者的方法优于非序列对比方法。此外,半监督的SeqCLR相比监督训练显著提高了性能,作者的方法在标准手写文本重新编码上取得了最先进的结果。
本文介绍了腾讯AI Lab在计算机视觉领域的最新研究成果,包括人脸和OCR技术的最新进展、相关竞赛和落地应用。团队在多个国际权威榜单上名列前茅,并首次提出了“级联回归”算法,有效提升了OCR的准确度。此外,团队还介绍了如何将人脸识别技术应用于安全领域,以及OCR技术在医疗领域的应用。
图像识别算法在企业文档管理软件里可谓是扮演了一位全能选手,让我们的文档处理变得轻松愉快,就像吃了一块巧克力一样。现在,让我们来看看图像识别算法在企业文档管理软件里的一些酷炫玩法:
对于一些复杂的或者质量低的图像,现有的基于注意力(attention-based)的方法识别效果很差,我们研究发现其中一个主要的原因是使用这种注意力模型评估的排列很容易损坏由于这些复杂或质量低的图像。换句话说,注意力模型(attention model)不能精确地联系特征向量与输入图像中对应的目标区域,这种现象称为attention drift。为了解决这个问题,本文提出了一种新的方法,称为FAN(Focusing Attention Network)来精确地识别自然图像中的文本。FAN主要由两个子网络组成:AN(attention Network)和现有方法一样,用于识别目标字符;FN(Focusing Network)通过检查AN的注意区域是非在图像中目标字符的正确位置,然后自动地调整这个注意点,下图直观地展示了这两个网络的功能。
做OCR时遇到的一个重要的问题在于检测文本时容易把一段多行文本给检测成单行,这会导致在后期识别部分的准确率降低,毕竟把多行文字当成一行文字去识别,肯定无法得到准确地结果。因此在送入识别之前,需要对检测出的文本框内容进行多行文本检测与分割。也就是:
在最近被ECCV2020接收的论文AutoSTR中,第四范式的研究人员提出了使用网络结构搜索(NAS)技术来自动化设计文本识别网络中的特征序列提取器,以提升文本识别任务的性能。
在学习本章之前,推荐先学习系列专栏文章:LabVIEW目标对象分类识别(理论篇—5)
1)提出的扩散嵌入网络可以解决流形不匹配问题,并且易于生成潜码,与 ImageNet 潜在空间更好地匹配。
当前一个显著的趋势是致力于构建更大更复杂的模型,它们拥有数百/数千亿个参数,能够生成令人印象深刻的语言输出。
领取专属 10元无门槛券
手把手带您无忧上云