首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    AIGC席卷智慧办公,金山办公如何架构文档智能识别与理解的通用引擎?

    如今,智慧办公是企业办公领域数字化转型的题中之义。作为国内最早开发的软件办公系统之一,金山办公如何应用深度学习实现复杂场景文档图像识别和技术理解?本文将从复杂场景文档的识别与转化、非文本元素检测与文字识别、文本识别中的技术难点等多个方面进行深度解析。 作者 | 金山办公CV技术团队 出品 | 新程序员 在办公场景中,文档类型图像被广泛使用,比如证件、发票、合同、保险单、扫描书籍、拍摄的表格等,这类图像包含了大量的纯文本信息,还包含有表格、图片、印章、手写、公式等复杂的版面布局和结构信息。早前这些信息均采用

    01

    CVPR 2021 | 用于文本识别的序列到序列对比学习

    今天给大家介绍的是以色列科技大学Aviad Aberdam等人发表在CVPR2021上的一篇文章 ”Sequence-to-Sequence Contrastive Learning for Text Recognition”。作者在这篇文章中提出了一种用于视觉表示的序列到序列的对比学习框架 (SeqCLR)用于文本识别。考虑到序列到序列的结构,每个图像特征映射被分成不同的实例来计算对比损失。这个操作能够在单词级别从每张图像中提取几对正对和多个负的例子进行对比。为了让文本识别产生有效的视觉表示,作者进一步提出了新的增强启发式方法、不同的编码器架构和自定义投影头。在手写文本和场景文本数据集上的实验表明,当文本解码器训练学习表示时,作者的方法优于非序列对比方法。此外,半监督的SeqCLR相比监督训练显著提高了性能,作者的方法在标准手写文本重新编码上取得了最先进的结果。

    03

    Focusing Attention Network(FAN)自然图像文本识别 学习笔记

    对于一些复杂的或者质量低的图像,现有的基于注意力(attention-based)的方法识别效果很差,我们研究发现其中一个主要的原因是使用这种注意力模型评估的排列很容易损坏由于这些复杂或质量低的图像。换句话说,注意力模型(attention model)不能精确地联系特征向量与输入图像中对应的目标区域,这种现象称为attention drift。为了解决这个问题,本文提出了一种新的方法,称为FAN(Focusing Attention Network)来精确地识别自然图像中的文本。FAN主要由两个子网络组成:AN(attention Network)和现有方法一样,用于识别目标字符;FN(Focusing Network)通过检查AN的注意区域是非在图像中目标字符的正确位置,然后自动地调整这个注意点,下图直观地展示了这两个网络的功能。

    02
    领券