首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    读书笔记:《算法图解》第三章 递归

    定义: 在数学与计算机科学中,是指在函数的定义中使用函数自身的方法。递归一词还较常用于描述以自相似方法重复事物的过程。例如,当两面镜子相互之间近似平行时,镜中嵌套的图像是以无限递归的形式出现的。也可以理解为自我复制的过程。 例子: 从前有座山,山里有座庙,庙里有个老和尚,正在给小和尚讲故事呢!故事是什么呢?“从前有座山,山里有座庙,庙里有个老和尚,正在给小和尚讲故事呢!故事是什么呢?‘从前有座山,山里有座庙,庙里有个老和尚,正在给小和尚讲故事呢!故事是什么呢?……’” 一只狗来到厨房,偷走一小块面包。厨子举

    05

    用斐波那契数列来说明递归和迭代的区别「建议收藏」

    递归与迭代都是基于控制结构:迭代用重复结构,而递归用选择结构。 递归与迭代都涉及重复:迭代显式使用重复结构,而递归通过重复函数调用实现重复。 递归与迭代都涉及终止测试:迭代在循环条件失败时终止,递归在遇到基本情况时终止。 使用计数器控制重复的迭代和递归都逐渐到达终止点:迭代一直修改计数器,直到计数器值使循环条件失败;递归不断产生最初问题的简化副本,直到达到基本情况。迭代和递归过程都可以无限进行:如果循环条件测试永远不变成false,则迭代发生无限循环;如果递归永远无法回推到基本情况,则发生无穷递归。 递归函数是通过调用函数自身来完成任务,而且在每次调用自身时减少任务量。而迭代是循环的一种形式,这种循环不是由用户输入而控制,每次迭代步骤都必须将剩余的任务减少;也就是说,循环的每一步都必须执行一个有限的过程,并留下较少的步骤。

    03
    领券