最大期望算法(Expectation-maximization algorithm,又译为期望最大化算法),是在概率模型中寻找参数最大似然估计或者最大后验估计的算法,其中概率模型依赖于无法观测的隐性变量。
如果使用基于最大似然估计的模型,模型中存在隐变量,就要用EM算法做参数估计。个人认为,理解EM算法背后的idea,远比看懂它的数学推导重要。idea会让你有一个直观的感受,从而明白算法的合理性,数学推导只是将这种合理性用更加严谨的语言表达出来而已。打个比方,一个梨很甜,用数学的语言可以表述为糖分含量90%,但只有亲自咬一口,你才能真正感觉到这个梨有多甜,也才能真正理解数学上的90%的糖分究竟是怎么样的。如果EM是个梨,本文的目的就是带领大家咬一口。 01 一个非常简单的例子 假设现在有两枚硬币1和2,,随机
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/Solo95/article/details/91345229
EM(Expectation Maximization: 期望最大化)这个问题感觉真的不太好用通俗的语言去说明白,因为它很简单,又很复杂。简单在于它的思想,简单在于其仅包含了两个步骤就能完成强大的功能,复杂在于它的数学推理涉及到比较繁杂的概率公式等。如果只讲简单的,就丢失了EM算法的精髓,如果只讲数学推理,又过于枯燥和生涩,但另一方面,想把两者结合起来也不是件容易的事。 一、最大似然 扯了太多,得入正题了。假设我们遇到的是下面这样的问题: 假设我们需要调查我们学校的男生和女生的身高分布。你怎
选自Medium 作者:Jonny Brooks-Bartlett 机器之心编译 概率论是机器学习与深度学习的基础知识,很多形式化的分析都是以概率的形式进行讨论。而这些讨论或多或少都离不开最大似然估计,因为它是参数估计的基础之一,也是构建模型的基石。在本文中,我们从最大似然估计到贝叶斯推理详细地讨论了机器学习的概率论基石,并希望能为读者的预习与复习提供优秀的参考资源。 什么是参数? 在机器学习中,我们经常使用一个模型来描述生成观察数据的过程。例如,我们可以使用一个随机森林模型来分类客户是否会取消订阅服务(称
关键字全网搜索最新排名 【机器学习算法】:排名第一 【机器学习】:排名第二 【Python】:排名第三 【算法】:排名第四 最大似然估计 上一篇(机器学习(2)之过拟合与欠拟合)中,我们详细的论述了模型容量以及由模型容量匹配问题所产生的过拟合和欠拟合问题。这一次,我们探讨哪些准则可以帮助我们从不同的模型中得到特定函数作为好的估计。其中,最常用的准则就是极大似然估计(maximum likelihood estimation,MLE)。(1821年首先由德国数学家C. F. Gauss提出,但是这个方法通常被
基本关于计算广告的每个模块都开始进行了一些记录,今天这个是关于计算广告算法的第一篇,也是从最基础的回归开始,逐渐加深,渗入到广告算法的各个模块中去,形成只关于广告的算法集合。也欢迎大家一起关注交流!
今天给大家介绍的是玛希多大学数据挖掘和生物医学信息学中心发表在Bioinformatics上的文章“BERT4Bitter: a bidirectional encoder representations from transformers (BERT)-based model for improving the prediction of bitter peptides”众所周知,许多药物固有地具有苦味,并且强烈的努力旨在淡化苦味以改善味道,从而改善药物摄入的依从性,因此,开发用于预测肽苦味的快速和准确的鉴定工具是药物开发和营养研究中的重要组成部分。目前只有一种计算方法,即iBitter-SCM,交互验证和独立测试集的准确率分别为0.871和0.844。虽然iBitter-SCM产生了相当高的预测精度,但它的整体预测性能仍有改进的空间,因此非常希望开发一种新的基于机器学习的预测器。本研究提出BERT苦味方法作为第一个基于Transformer(BERT)的预测苦味肽的双向编码器表示。在本研究中,每个肽序列被视为基于自然语言处理技术的句子,其中20个氨基酸中的每一个都被视为单词DSDFF自动生成特征描述符,而不需要特征编码的系统设计和选择。
EM算法的英文全称是Expectation-maximization algorithm,即最大期望算法,或者是期望最大化算法。EM算法号称是十大机器学习算法之一,听这个名头就知道它非同凡响。我看过许多博客和资料,但是少有资料能够将这个算法的来龙去脉以及推导的细节全部都讲清楚,所以我今天博览各家所长,试着尽可能地将它讲得清楚明白。
机器学习十大算法之一:EM算法。能评得上十大之一,让人听起来觉得挺NB的。什么是NB啊,我们一般说某个人很NB,是因为他能解决一些别人解决不了的问题。神为什么是神,因为神能做很多人做不了的事。那么EM算法能解决什么问题呢?或者说EM算法是因为什么而来到这个世界上,还吸引了那么多世人的目光。 我希望自己能通俗地把它理解或者说明白,但是,EM这个问题感觉真的不太好用通俗的语言去说明白,因为它很简单,又很复杂。简单在于它的思想,简单在于其仅包含了两个步骤就能完成强大的功能,复杂在于它的数学推理
本文在少用数学公式的情况下,尽量仅依靠感性直觉的思考来讲解 极大似然估计 & 极大后验概率估计,并且从名著中找了几个实例给大家看看这两种估计如何应用 & 其非常有趣的特点。
EM算法不是模型,更确切的说是一种解决问题的思路。这个思路在机器学习中的场景是什么呢?
变分自编码器(VAE)是当下最流行的生成模型系列之一,它可以被用来刻画数据的分布。经典的期望最大化(EM)算法旨在学习具有隐变量的模型。本质上,VAE 和 EM 都会迭代式地优化证据下界(ELBO),从而最大化观测数据的似然。本文旨在为 VAE 和 EM 提供一种统一的视角,让具有机器学习应用经验但缺乏统计学背景的读者最快地理解 EM 和 VAE。 论文链接(已收录于AI open):https://www.aminer.cn/pub/6180f4ee6750f8536d09ba5b 1 引言 我们往往
在统计学中,最大似然估计(maximum likelihood estimation,MLE),也称极大似然估计,是用来估计一个概率模型的参数的一种方法。最大似然估计在统计学和机器学习中具有重要的价值,常用于根据观测数据推断最可能的模型参数值。这篇文章将详细介绍最大似然估计。
机器学习十大算法之一:EM算法。能评得上十大之一,让人听起来觉得挺NB的。什么是NB啊,我们一般说某个人很NB,是因为他能解决一些别人解决不了的问题。神为什么是神,因为神能做很多人做不了的事。那么EM算法能解决什么问题呢?或者说EM算法是因为什么而来到这个世界上,还吸引了那么多世人的目光。
【导读】主题链路知识是我们专知的核心功能之一,为用户提供AI领域系统性的知识学习服务,一站式学习人工智能的知识,包含人工智能( 机器学习、自然语言处理、计算机视觉等)、大数据、编程语言、系统架构。使用请访问专知 进行主题搜索查看 - 桌面电脑访问www.zhuanzhi.ai, 手机端访问www.zhuanzhi.ai 或关注微信公众号后台回复" 专知"进入专知,搜索主题查看。今天给大家继续介绍我们独家整理的机器学习——贝叶斯参数估计方法。 这次介绍一下机器学习中常见的参数估计方法,这对推断模
维特比译码算法是维特比在1967年提出。维特比算法的实质是最大似然译码,但它利用了编码网格图的特殊结构,从而降低了计算的复杂度,与完全比较译码相比,它的优点是使得译码器的复杂性不再是码字序列中所含码元数的函数。
1.1 依据: 这个方法最早是遗传学家以及统计学家罗纳德·费雪爵士在 1912 年至1922 年间开始使用的 。基本思想是:当从模型总体随机抽取n组样本观测值后,最合理的参数估计量应该使得从模型中抽取该n组样本观测值的概率最大,而不是像最小二乘估计法旨在得到使得模型能最好地拟合样本数据的参数估计量。
在机器学习和统计学领域中,似然函数(Likelihood Function)是一个至关重要的概念。它不仅是参数估计的基础,而且在模型选择、模型评估以及众多先进的算法和技术中都有着广泛的应用。本文旨在全面但深入地探讨似然函数,从其基本定义和性质到在不同机器学习问题中的具体应用。
作者:Bowen Tan , Zhiting Hu , Zichao Yang, Ruslan Salakhutdinov, Eric P. Xing
全概率公式的意义在于:无法知道一个事物独立发生的概率,但是我们可以将其在各种条件下发生的概率进行累加获得。
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/haluoluo211/article/details/78776283
最大期望(Expectation Maximum)算法是一种迭代优化算法,其计算方法是每次迭代分为期望(E)步和最大(M)步。我们先看下最大期望算法能够解决什么样的问题。
例子是说测量校园里面同学的身高分布,分为男生和女生,分别抽取100个人...具体的不细讲了,参考文档中讲得很详细。假设他们的身高是服从高斯分布的。但是这个分布的均值u和方差2我们不知道,这两个参数就是我们要估计的。记作θ=[u, ]T。
线性回归的函数如下: 逻辑回归则是通过对线性回归做次转换,来达到目的。其公式如下: 1、转换函数 为什么需要转换函数? 转换函数的主要作用是提供一种非线性的建模能力。如果没有转换函数,那么Log
极大似然估计法是基于极大似然原理提出的,为了说明极大似然原理,我们先看个例子 例子: 1、某同学与一位猎人一起外出打猎。忽然,一只野兔从前方窜过,只听一声枪响,野兔应声倒下,若你推测一下,是谁击中了野兔,你会怎样想 2、有一时间A,我们知道它发生的概率p只可能是: p=0.1,0.3或0.6 若在一次观测中,事件A发生了,试让你推想一下p取何值 最大似然原理 概率大的事件在一次观测中更容易发生; 在一次观测中发生了的事件其概率应该大 (1)
最大期望算法(Expectation Maximization Algorithm,又译期望最大化算法),是一种迭代算法,用于含有隐变量(hidden variable)的概率参数模型的最大似然估计或极大后验概率估计。
假设有3个数据点,产生这3个数据点的过程可以通过高斯分布表达。这三个点分别是9、9.5、11。我们如何计算高斯分布的参数μ 、σ的最大似然估计?
翻译 | AI科技大本营(rgznai100) 参与 | 刘畅 近日,圣母大学(University of Notre Dame)公开了一门统计学课程资源,包括:课程笔记和授课视频,课后作业(以及解决方案)以及课程信息和参考以及课程大纲。 这份资源非常丰富,但从营长以往推荐的文章和资源看,大家可真不待见“统计”这个词,从字面上看,它太无聊了,但它对很多机器学习的应用领域又是必不可少的,所以营长这次还是推荐给大家。 1.统计计算和概率统计简介 课程介绍:该部分包括课程,书籍和参考资料,目标,组织的介绍;概
我们常常谈论聚类,是通过距离去定义,比如K-means,距离判别等;今天我们一起谈谈EM聚类,一种基于统计分布的聚类模型,以统计分布作为设计算法的依据。其实,在大数定律的归束下,不管样本的分布类型是什么,当样本量趋于无穷大时,分布的类型将渐进于正态分布。
寄语:首先,简单介绍了生成模型和判别模型,对条件概率、先验概率和后验概率进行了总结;其次,对朴素贝叶斯的原理及公式推导做了详细解读;再次,对三种可能遇到的问题进行了解析,给出了合理的解决办法;最后,对朴素贝叶斯的sklearn参数和代码进行了详解。
翻译了一篇博文,原文pdf可后台回复“最小二乘”下载。 当面试时问到最小二乘损失函数的基础数学知识时,你会怎么回答? Q: 为什么在回归中将误差求平方? A:因为可以把所有误差转化为正数。 Q:为什么
http://blog.csdn.net/u011239443/article/details/77202136
1 最大似然概率 例子是说测量校园里面同学的身高分布,分为男生和女生,分别抽取100个人...具体的不细讲了,参考文档中讲得很详细。假设他们的身高是服从高斯分布的。但是这个分布的均值u和方差∂2我们不知道,这两个参数就是我们要估计的。记作θ=[u, ∂]T。 我们独立地按照概率密度p(x|θ)抽取100了个(身高),组成样本集X,我们想通过样本集X来估计出未知参数θ。这里概率密度p(x|θ)我们假设是是高斯分布N(u,∂)的形式,其中的未知参数是θ=[u, ∂]T。抽到的样本集是X={x
深度前馈网络(deep feedforward network),也叫做前馈神经网络(feedforward neural network)或者多层感知机(multilayer perceptron,MLP),是典型的深度学习模型。前馈网络的目标是近似某个函数
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/Solo95/article/details/90730422
1 问题 模型选择问题:对于一个学习问题,可以有多种模型选择。比如要拟合一组样本点,可以使用线性回归 ,也可以用多项式回归 。那么使用哪种模型好呢(能够在偏差和方差之间达到平衡最优)?
隐马尔科夫模型(Hidden Markov Model,HMM),和回归、分类那些处理相互独立的样本数据的模型不同,它用于处理时间序列数据,即样本之间有时间序列关系的数据。从这一点来说,它和卡尔曼滤波算法很像。事实上,HMM和卡尔曼滤波的算法本质是一模一样的,只不过HMM要假设隐藏变量是离散的,而卡尔曼滤波假设隐藏变量是连续的。隐藏变量是HMM里的关键概念之一,可以理解为无法直接观测到的变量,即HMM中Hidden一词的含义;与之相对的是观测变量,即可以直接观测到的变量;HMM的能力在于能够根据给出的观测变量序列,估计对应的隐藏变量序列是什么,并对未来的观测变量做预测。
我的R语言小白之梯度上升和逐步回归的结合使用 今天是圣诞节,祝你圣诞节快乐啦,虽然我没有过圣诞节的习惯,昨天平安夜,也是看朋友圈才知道,原来是平安夜了,但是我昨晚跟铭仔两个人都不知道是平安夜跑去健身房玩了,给你们看下我两的练了一段时间的肌肉。 好了不显摆了,进入我们今天的主题通常在用sas拟合逻辑回归模型的时候,我们会使用逐步回归,最优得分统计模型的等方法去拟合模型。而在接触机器学习算法用R和python实践之后,我们会了解到梯度上升算法,和梯度下降算法。其实本质上模型在拟合的时候用的就是最大似然估
本文介绍了一种经典的迭代求解算法—EM算法。首先介绍了EM算法的概率理论基础,凸函数加jensen不等式导出算法的收敛性,算法核心简单概况为固定其中一个参数,优化另一个参数逼近上界,不断迭代至收敛的过程。然后介绍高斯混合,朴素贝叶斯混合算法基于EM算法框架的求解流程。最后介绍了基于概率隐因子的LDA主题模型,这一类基于隐因子模型-包括因子分解,概率矩阵分解皆可通过EM算法求解,且与EM思想相通。
作者:tobynzhang 腾讯PCG算法工程师 |导语 关于各类损失函数的由来,很多地方,如简书、知乎都有相关文章。但是很少看到统一成一个体系的阐述,基本都是对一些公式的讲解。实际上这一系列的损失函数都是有一整套数学体系的,可以互相推导互相转化的。作者特地做了一些整理,水平有限,方便读者查阅。水平有限,大佬勿喷,感激不尽~ 一、概述 各类有监督算法的本质其实都是在于:用样本观察值去估计随机事件的实际分布。举个例子,推荐算法,其实就是使用观察到的用户行为,如点击行为,去估计用户点击这个随机事件的实际
从此系列推送以来,小编就和大家一直在学习的路上。作为没有学高数的理科生,在跟着StatQuest视频的学习中也收获颇丰,相信大家也一样!
交流思想,注重分析,更注重通过实例让您通俗易懂。包含但不限于:经典算法,机器学习,深度学习,LeetCode 题解,Kaggle 实战。期待您的到来! 01 — 回顾 已经分析了朴素贝叶斯分类,拉普拉斯修正,半朴素贝叶斯分类器,在这些理论阐述中,都带有详细的例子解释,通过例子理解相关的理论是一种快速消化公式和理论比较不错的方法。 接下来,介绍一种非常经典的求解隐变量的算法,这也是一种经典的算法。让我们先从最大似然估计入手,在03节真正分析这种算法。 02 — 最大似然估计求分布参数 给定一堆苹果,里面有好
背景 结构 训练 最大似然估计 VGD取代最大似然估计 D的训练 G的训练 算法 问题 G的更新优化不一定朝着最小的方向 通过抽样估计分布 G中的目标函数 利用D去评估分布差异 mode collap
推导EM算法之前,先引用《统计学习方法》中EM算法的例子: 例1. (三硬币模型) 假设有3枚硬币,分别记作A,B,C。这些硬币正面出现的概率分别为π,p和q。投币实验如下,先投A,如果A是正面,即A=1,那么选择投B;A=0,投C。最后,如果B或者C是正面,那么y=1;是反面,那么y=0;独立重复n次试验(n=10),观测结果如下: 1,1,0,1,0,0,1,0,1,1假设只能观测到投掷硬币的结果,不能观测投掷硬币的过程。问如何估计三硬币正面出现的概率,即π,p和q的值。 解:设随机变量y是观测变量,
EM( expectation-maximization,期望最大化)算法是机器学习中与SVM(支持向量机)、概率图模型并列的难以理解的算法,主要原因在于其原理较为抽象,初学者无法抓住核心的点并理解算法求解的思路。本文对EM算法的基本原理进行系统的阐述,并以求解高斯混合模型为例说明其具体的用法。文章是对已经在清华大学出版社出版的《机器学习与应用》一书中EM算法的讲解,对部分内容作了扩充。
全概率公式为概率论中的重要公式,它将对一复杂事件A的概率求解问题转化为了在不同情况下发生的简单事件的概率的求和问题。
领取专属 10元无门槛券
手把手带您无忧上云