前言 EK算法是求网络最大流的最基础的算法,也是比较好理解的一种算法,利用它可以解决绝大多数最大流问题。...但是受到时间复杂度的限制,这种算法常常有TLE的风险 思想 还记得我们在介绍最大流的时候提到的求解思路么? 对一张网络流图,每次找出它的最小的残量(能增广的量),对其进行增广。...没错,EK算法就是利用这种思想来解决问题的 实现 EK算法在实现时,需要对整张图遍历一边。 那我们如何进行遍历呢?BFS还是DFS?...通过上图不难看出,这种算法的性能还算是不错, 不过你可以到这里提交一下就知道这种算法究竟有多快(man)了 可以证明,这种算法的时间复杂度为 大体证一下: 我们最坏情况下每次只增广一条边,则需要增广...在BFS的时候,由于反向弧的存在,最坏情况为 总的时间复杂度为 后记 EK算法到这里就结束了。 不过loj那道题怎么才能过掉呢? 这就要用到我们接下来要讲的其他算法
q.push(i); } } } return false; } int EK(int s,int t){ int maxflow=0;...i++){ scanf("%d%d%d",&u,&v,&c); g[u][v]+=c; } printf("%d\n",EK
EK (Edmond-Karp) 算法 学习笔记 什么是EK算法 EK (Edmond-Karp) 算法,说白了就是求最大流/费用流之类的问题的算法。...从s到t经过若干个点,若干条边,每一条边的水流都不能超过边权值(可以小于等于但不能大于) (由于是来学EK算法的,最大流什么的详细解读就不说了) 例题 Luogu P3376 【模板】网络最大流 题意...给出一个网络图,以及其源点和汇点,求出其网络最大流。...算法核心(你别急,我还没说完) int EK(){ ans=0; while(bfs()){ int Min=2e9; for(int i=t;i!...());putchar('\n'); return 0; } EK算法拓展 费用流问题 Luogu P3381 【模板】最小费用最大流 Code #include #include
这两本是之前有朋友在评论里推荐的: 《牧羊少年奇幻之旅》 《大流感:最致命瘟疫的史诗》 画外音:坚持一件事很难,但读书,真的有用。 《牧羊少年奇幻之旅》 小时候,有人问我们的梦想是什么?...15分钟,扫码听书《牧羊少年奇幻之旅》 《大流感:最致命瘟疫的史诗》 由历史学家约翰·M·巴里带来的全面回顾1918年大流感的这本书,被美国科学院评为2005年度最佳科学/医学类图书。...在以冷静客观的笔调描述了大流感的社会图景,以深入浅出的逻辑解释了病毒与人类之间的战争关系之后,《大流感:最致命瘟疫的史诗》中更加宝贵的对瘟疫留给人类的遗产进行了深刻反思,展现出了理性的光辉。...所以1918年大流感的最后一条教训,即那些身居要职的权威人士必须降低可能离间整个社会的恐慌,可谓知易行难。 这是流感,仅仅只是流感。...让我们一起通过《大流感:最致命瘟疫的史诗》来反思如何应对病毒。 15分钟,扫码听书《大流感,最致命瘟疫的史诗》 不知不觉,坚持读书3年了,希望我们一起,养成自律的习惯。
前置知识 网络最大流入门 前言 Dinic在信息学奥赛中是一种最常用的求网络最大流的算法。 它凭借着思路直观,代码难度小,性能优越等优势,深受广大oier青睐 思想 Dinic算法属于增广路算法。...它的核心思想是:对于每一个点,对其所连的边进行增广,在增广的时候,每次增广“极大流” 这里有别于EK算法,EK算法是从边入手,而Dinic算法是从点入手 在增广的时候,对于一个点连出去的边都尝试进行增广...,即多路增广 Dinic算法还引入了分层图这一概念,即对于$i$号节点,用dis(i)表示它到源点的距离,并规定,一条边能够被增广,当且仅当它连接的两个点$u,v$满足:dis(v)=dis(u)+1,...Dinic算法的性能在比赛中表现的非常优越。...按照集训队大佬ly的说法,我们可以认为Dinic算法的时间复杂度是线性的(比某标号算法不知道高到哪里去了) 代码 题目链接 #include #include #include
实现功能:同Dinic网络最大流 1 这个新的想法源于Dinic费用流算法。。。...在费用流算法里面,每次处理一条最短路,是通过spfa的过程中就记录下来,然后顺藤摸瓜处理一路 于是在这个里面我的最大流也采用这种模式,这样子有效避免的递归,防止了爆栈么么哒 1 type 2
这样的话,求解最大流就只需要在残余网络中寻找增广路,直到不存在可以从s流向t 的增广路,此时即为最大流。求解最大流问题的高效算法有 dinic,sap和isap。...我们今天讲最基础的FF算法与EK算法,他俩的区别在于一个是DFS找增广路,一个是BFS找增广路。后者高效一点。...Edmonds-Karp算法:以广度优先的增广路算法,又称为最短增广路算法(Shortest Augument Panth, SAP)。 最短增广路算法步骤:采用队列q 来存放已访问未检查的结点。...如果队列不空,继续下一步,否则算法结束,找不到可增广路。当前的实流网络就是最大流网络,返回最大流值maxflow。 队头元素new 出队,在残余网络中检查new 的所有邻接结点i。...这里给出EK算法模板: #include #include #include #include #include <algorithm
实现功能:同sap网络最大流 今天第一次学Dinic,感觉最大的特点就是——相当的白话,相当的容易懂,而且丝毫不影响复杂度,顶多也就是代码长个几行 主要原理就是每次用spfa以O(n)的时间复杂度预处理出层次图
实现功能:输入M,N,S,T;接下来M行输入M条弧的信息(包括起点,终点,流量,单位费用);实现功能是求出以S为源点,T为汇点的网络最大流的最小费用 其实相当的像Dinic最大流呐= = 还是spfa处理出最短路径...这次是最短路径,所以时空复杂度将有所提高,害得我都开循环队列了TT),然后顺着最短路径顺藤摸瓜找回去,求出流大小和最小的费用,然后,没有然后了,程序还是一样的好懂么么哒(HansBug:感觉Dinic算法真心超级喜感...then swap(j,k); 89 add(j,k+n,1,l); 90 end; 91 flow:=0;ans:=0; //flow表示最大流
网络流看了两天,终于有了一点眉目,也拿模版A了道题目,通过对于模版代码的调试也真正了解了ek算法的用途了。 想好好写下总结都不让人顺心,写到一半网站死了,又得重新写。。...不说废话了,直接正题 首先要先清楚最大流的含义,就是说从源点到经过的所有路径的最终到达汇点的所有流量和 EK算法的核心 反复寻找源点s到汇点t之间的增广路径,若有,找出增广路径上每一段[容量-流量...这么一个图,求源点1,到汇点4的最大流 由于我是通过模版真正理解ek的含义,所以先上代码,通过分析代码,来详细叙述ek算法 1 #include 2 #include <queue...但这个答案明显不是最大流,因为我们可以同时走1-2-4和1-3-4,这样可以得到流量为2的流。 那么我们刚刚的算法问题在哪里呢?...这就是这个算法的精华部分,利用反向边,使程序有了一个后悔和改正的机会。而这个算法和我刚才给出的代码相比只多了一句话而已。 至此,最大流Edmond-Karp算法介绍完毕。
这块主要就是要理解,什么是maxflow,以及节点最后分割的类型是SOURCE还是SINK分别意味着什么 graphcuts算法时间复杂度与其他最大流算法的比较: ?
简介 最大流算法主要分为两大类,一类为增广路算法,一类为预流推进算法。最大流算法解决的是在有向网路图 中计算从源点 到汇点 的最大流量问题,以及最小割容量问题。...最小割最大流定理 最大流的值等于 的最小割容量。 2. 增广路算法 剩余容量 剩余容量 表示边 的容量与流量之差。...EK 算法复杂度为 (nnn 为节点数,mmm 为边数)。...可以看出,EK 算法存在以下明显不足: 一次 BFS 只增广一次,如果残量网络中还存在增广路则被浪费了 对于已经没有剩余容量的边,EK 算法仍然进行增广判断从而导致时间上的浪费 层次深度...在稀疏图上,Dinic 算法和 EK 算法相差不大,但在稠密图上(二分匹配之类的)Dinic的优势很明显。
实现功能:同前 程序还是一如既往的优美,虽然比起邻接矩阵的稍稍长了那么些,不过没关系这是必然,但更重要的一个必然是——速度将是一个质的飞跃^_^(这里面的poi...
实现功能:同之前 可以看见的是这次的程序优美了许多,代码简短了一倍还多,可是速度却是和原来的邻接表一个级别的(在Codevs上面草地排水那题的运行时间比较,但是...
实现功能:同最大流 1 这里面主要是把前面的邻接矩阵改成了邻接表,相比之下速度大大提高——本人实测,当M=1000000 N=10000 时,暂且不考虑邻接矩阵会不会MLE,新的程序速度快了很多倍(我们家这个很弱的电脑上耗时
前言 网络最大流是网络流中最基础也是最重要的部分,后边的许多模型也都是由最大流问题引申而来的 最大流 在研究这个问题之前,让我们先来学习一下前置知识 可行流 设f(u,v)表示边(u,v)的当前容量上限...最大流 定义:在所有可行流中流量最大的流 那么我们如何求解这个东西呢?...看到这儿的同学,恭喜你们被带到坑里啦O(∩_∩)O哈哈~ 实现 我目前见过的最大流算法有以下几种 EK(最简单,比较慢) Dinic(最常见,性能良好) ISAP/SAP(也比较常见,性能很好) 最高标号预流推进...对于这些算法,博主给大家的建议是: 理解第一种方法,并用代码实现一次 熟练掌握第二种算法,深刻的理解其内涵,并能做到超级熟练的运用(起码5min之内要敲出来&&没有错误) 理解第三种算法,并至少运用一次...(因为第三种算法跑的比较快,所以可以用来抢排行榜$rank1$) 第四五六中算法建议大家理解其内涵,代码实现就无所谓了,因为基本用不到,不过学会了可以用来装13:joy: 另外,在书上看到过据说可以使用动态树优化最大流算法
总第77篇 本篇介绍机器学习众多算法里面最基础也是最“懒惰”的算法——KNN(k-nearest neighbor)。你知道为什么是最懒的吗?...该算法常用来解决分类问题,具体的算法原理就是先找到与待分类值A距离最近的K个值,然后判断这K个值中大部分都属于哪一类,那么待分类值A就属于哪一类。...02|算法三要素: 通过该算法的原理,我们可以把该算法分解为3部分,第一部分就是要决定K值,也就是要找他周围的几个值;第二部分是距离的计算,即找出距离他最近的K个值;第三部分是分类规则的确定,就是以哪种标准去评判他是哪一类...训练算法:KNN没有这一步,这也是为何被称为最懒算法的原因。 测试算法:将提供的数据利用交叉验证的方式进行算法的测试。 使用算法:将测试得到的准确率较高的算法直接应用到实际中。...5、应用算法: 通过修改inX的值,就可以直接得出该电影的类型。
吐槽 这个算法。。 怎么说........ 学来也就是装装13吧。。。。...长得比EK丑 跑的比EK慢 写着比EK难 思想 大家先来猜一下这个算法的思想吧:joy: 看看人家的名字——最高标号预留推进 多么高端大气上档次2333333咳咳 从它的名字中我们可以看出,它的核心思想是...那么推到最后,我们就可以得到到达汇点的最大流量 不过可能会出现一种情况,就是A送流量给B,B觉得不好意思不想要,于是又推给A,A非常热情便又推给B……直到推到TLE为止。。那怎么解决这种情况呢?...另外还有一个比较显然的优化,如果一个高度i是不存在的,即图中没有高度为i的点,那么从比高的点一定不会走到汇点T,因为根据我们的限制条件,必须要经过高度为i的点,于是这些点就没有用了 代码 题目在这儿 不是我说,这个算法真的是死慢死慢的
IDA Star)模板 图论--最短路--dijkstra(含路径输出)模板 图论--最长路--基于SPFA的调整模板 传递闭包: 传递闭包 欧拉与哈密尔顿路径: 欧拉回路 图论--欧拉回路--弗罗莱算法模板...图论--最短路径生成树(最小边权和)模板 图论--最短路径生成树计数--模板 图论--生成树--次小生成树模板 图论--曼哈顿距离最小生成树模板 图论--生成树计数模板 图论--最小生成树--Prim算法...E-DCC缩点模板 图论--强连通SCC缩点模板 二分图匹配: 图论--二分图最大匹配--匈牙利 图论--二分图最佳完美匹配--KM 一般图带花树匹配: 图论--一般图带花树匹配(缩点) 网络流: 最大流...(EK) 最大流(Dinic矩阵版) 最大流(Dinic邻接表版) 最大流(Hlpp) 2-SAT: 2-SAT--暴力染色法求字典序最小模版 2-SAT--暴力染色法模板(字典序最小解) RQ的板子
解释一下GBDT算法的过程 1.1 Boosting思想 1.2 GBDT原来是这么回事 3. GBDT的优点和局限性有哪些? 3.1 优点 3.2 局限性 4....解释一下GBDT算法的过程 GBDT(Gradient Boosting Decision Tree),全名叫梯度提升决策树,使用的是Boosting的思想。.../ML-NLP/Machine Learning/3.2 GBDT 代码补充参考for——小白: Python科学计算——Numpy.genfromtxt pd.DataFrame()函数解析(最清晰的解释...) iloc的用法(最简单) scikit-learn 梯度提升树(GBDT)调参小结(包含所有参数详细介绍) 版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。
领取专属 10元无门槛券
手把手带您无忧上云