总第77篇 本篇介绍机器学习众多算法里面最基础也是最“懒惰”的算法——KNN(k-nearest neighbor)。你知道为什么是最懒的吗?...该算法常用来解决分类问题,具体的算法原理就是先找到与待分类值A距离最近的K个值,然后判断这K个值中大部分都属于哪一类,那么待分类值A就属于哪一类。...02|算法三要素: 通过该算法的原理,我们可以把该算法分解为3部分,第一部分就是要决定K值,也就是要找他周围的几个值;第二部分是距离的计算,即找出距离他最近的K个值;第三部分是分类规则的确定,就是以哪种标准去评判他是哪一类...训练算法:KNN没有这一步,这也是为何被称为最懒算法的原因。 测试算法:将提供的数据利用交叉验证的方式进行算法的测试。 使用算法:将测试得到的准确率较高的算法直接应用到实际中。...5、应用算法: 通过修改inX的值,就可以直接得出该电影的类型。
解释一下GBDT算法的过程 1.1 Boosting思想 1.2 GBDT原来是这么回事 3. GBDT的优点和局限性有哪些? 3.1 优点 3.2 局限性 4....解释一下GBDT算法的过程 GBDT(Gradient Boosting Decision Tree),全名叫梯度提升决策树,使用的是Boosting的思想。...它的基本思路是将基分类器层层叠加,每一层在训练的时候,对前一层基分类器分错的样本,给予更高的权重。测试时,根据各层分类器的结果的加权得到最终结果。.../ML-NLP/Machine Learning/3.2 GBDT 代码补充参考for——小白: Python科学计算——Numpy.genfromtxt pd.DataFrame()函数解析(最清晰的解释...) iloc的用法(最简单) scikit-learn 梯度提升树(GBDT)调参小结(包含所有参数详细介绍) 版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。
吊打 vue-waterfall、vue-waterfall-easy 一切框架 <!DOCTYPE html> <html lang="en"> <hea...
KNN是一种分类算法,其全称为k-nearest neighbors, 所以也叫作K近邻算法。该算法是一种监督学习的算法,具体可以分为以下几个步骤 1....第一步,载入数据,因为是监督学习算法,所以要求输入数据中必须提供样本对应的分类信息 2. 第二步,指定K值,为了避免平票,K值一般是奇数 3....K值为3时,绿色的点归类为红色,K值为5时,绿色的点归类为蓝色。由此可见,K值的选取是模型的核心因素之一。 除此之外,还有另外一个因素,就是距离的计算。...在scikit-learn中,使用KNN算法的代码如下 >>> from sklearn.neighbors import KNeighborsClassifier >>> X = [[0], [1],...3) >>> neigh.fit(X, y) KNeighborsClassifier(n_neighbors=3) >>> print(neigh.predict([[1.1]])) [0] KNN算法原理简单
作 者:柳行刚 编 辑:李文臣 1 字符串匹配是经典的KMP算法。下面以字符串"BBC ABCDAB ABCDABCDABDE"为例,查找是否包含串"ABCDABD"?...图二 3 上图中,D与空格不相等,但是它有前缀AB与后缀AB相当,KMP的思想就是利用最长的公共前缀与最长公共后缀相等,来加快每次不相等时移动的距离,来提高搜索效率。...查next数组可知,最后一个匹配字符B对应的"部分匹配值"为2,因此后移动的位数:移动位数 = 已匹配的字符数 - 对应的部分匹配值。因为 6 - 2 等于4,所以将搜索词向后移动4位。...下面是next数组和匹配算法参照代码。...返回的位置是从0开始的。
碰巧发现了这篇博客 Android ListView滚动条配置完全解析,详细介绍了ScrollView这个组件的相关配置,非常清楚。我利用ScrollView实现了所需要的目标。...唐初 三代帝王在此建立了规模宏大的避暑行宫,遗址现今保存完整。"...唐初 三代帝王在此建立了规模宏大的避暑行宫,遗址现今保存完整。"...唐初 三代帝王在此建立了规模宏大的避暑行宫,遗址现今保存完整。"...ScrollView代表纵向滚动条 滚动条的样式那篇博客已经给出代码,可以去查看
有没有比较简单适合小白入手的算法呢~~当然有的,今天我们从最最简单的机器学习算法kNN入手,慢慢的通过一些简单的例子来理解机器学习。...你可以用pip安装,也可以直接下载anaconda这个神器,非常方便,一下子把机器学习,数据分析要的库全部安装了,省的你一个一个下载. 2.挑个最简单的数据集 工欲善其事,必先利其器。...:有花萼、花瓣和花蕊三个部分,花萼就是绿色的那部分在最外边,然后是花瓣,最里面是花蕊....训练数据 测试测试集的数据 看准确率得分 最后模型调整参数,降维等,重复上面的步骤 2).什么是kNN算法 kNN是k-Nearest Neighbors的简称,我觉得是机器学习里面最简单的算法.它的核心思想就是...简单的说就是让最相似的K个样本来投票决定。
现在我们举个具体的例子来介绍一下排序算法。 ? 首先出场的我们的主人公小哼,上面这个可爱的娃就是啦。期末考试完了老师要将同学们的分数按照从高到低排序。...因为其实真正的桶排序要比这个复杂一些,以后再详细讨论,目前此算法已经能够满足我们的需求了。 这个算法就好比有11个桶,编号从0~10。...还有一点,在表示时间复杂度的时候,n和m通常用大写字母即O(M+N)。 这是一个非常快的排序算法。...桶排序从1956年就开始被使用,该算法的基本思想是由E.J.Issac R.C.Singleton提出来。之前说过,其实这并不是真正的桶排序算法,真正的桶排序算法要比这个更加复杂。...但是考虑到此处是算法讲解的第一篇,我想还是越简单易懂越好,真正的桶排序留在以后再聊吧。需要说明一点的是:我们目前学习的简化版桶排序算法其本质上还不能算是一个真正意义上的排序算法。为什么呢?
任何关于算法、编程、AI行业知识或博客内容的问题,可以随时扫码关注公众号「图灵的猫」,加入”学习小组“,沙雕博主在线答疑~此外,公众号内还有更多AI、算法、编程和大数据知识分享,以及免费的SSR节点和学习资料...求解对偶问题,常用的算法是SMO,彻底地理解这个算法对初学者有一定难度,本文尝试模拟算法作者发明该算法的思考过程,让大家轻轻松松理解SMO算法。文中的“我”拟指发明算法的大神。...001、初生牛犊不怕虎 最近,不少哥们儿向我反映,SVM对偶问题的求解算法太低效,训练集很大时,算法还没有蜗牛爬得快,很多世界著名的学者都在研究新的算法呢。...等等,哥们说现有算法比较慢,所以我绝对不能按照常规思路去思考,要另辟蹊径。 蹊径啊蹊径,你在哪里呢? 我冥思苦想好几天,都没有什么好办法,哎!看来扬名立万的事儿要泡汤了。...关注微信公众号,点击“学习资料”菜单即可获取算法、编程资源以及教学视频,还有免费SSR节点相送哦。
( 父组件 ) 按钮交互的时候 , 它们之间的通讯很麻烦 : export default {} 是不是方便了许多 , 这就是 vuex 最简单的应用...如果还有其他的组件需要使用 vuex , 就新建一个对应的状态文件 , 然后将他们加入 store 文件夹下的 index.js 文件中的 modules 中。...这里需要注意的是: mutations 中的方法是不分组件的 , 假如你在 dialog_stroe.js 文件中的定义了 switch_dialog 方法 , 在其他文件中的一个 switch_dialog...mutations里的操作必须是同步的。
升级R一直是一件比较痛苦的事情,你需要先安装新的R,然后在逐一安装以前装过的包。最快的办法也是把以前的包文件夹拷到新的R中,然后在新的版本中运行包更新。...由于官方的源一般都提供最新R版本的二进制文件,所以为了更好的稳定性一般也要跟着升级。所以这是一件相对痛苦又不得不做的事情。...现在installr程序包提供了自动化升级的途径,你只需要回答几个问题就可以将R升级至最新版本,同时相应的程序包也会及时的得到更新。...你需要做的只是: install.packages("installr") library(installr) updateR() 然后就会提示最新的R版本,和是否需要拷贝老版本的R程序包目录,是否需要移除老的程序包目录以及是否更新新的版本中的程序包...一切搞定之后会提醒你是否需要打开新的RGui,程序会默认将系统的默认R设置为最新版,因此RStudio也会自动切换到最新的R版本。
4、随着输入的字符的增加,当代码宽度到达界线时,IDEA会自动将代码换行。...修改为NONE 4、IntelliJ强制更新Maven Dependencies 1、Intellj 自动载入Mave依赖的功能很好用,但有时候会碰到问题,导致pom文件修改却没有触发自动重新载入的动作...这些不起眼却是至关重要的最后一块拼图有: 2、Ø 命令:Ctrl+Shift+A可以查找所有Intellij的命令,并且每个命令后面还有其快捷键。所以它不仅是一大神键,也是查找学习快捷键的工具。...5、Ø 切换窗口:Alt+Num,常用的有1-项目结构,3-搜索结果,4/5-运行调试。Ctrl+Tab切换标签页,Ctrl+E/Ctrl+Shift+E打开最近打开过的或编辑过的文件。...效果如下: 这个模式的好处就是,可以让你更加专注,因为你只能看到特定某个类的代码。可能读者会问,进入这个模式后,我想看其他类的代码怎么办?这个时候,就要考验你快捷键的熟练程度了。
升级R一直是一件比较痛苦的事情,你需要先安装新的R,然后在逐一安装以前装过的包。最快的办法也是把以前的包文件夹拷到新的R中,然后在新的版本中运行包更新。...由于官方的源一般都提供最新R版本的二进制文件,所以为了更好的稳定性一般也要跟着升级。所以这是一件相对痛苦又不得不做的事情。...现在installr程序包提供了自动化升级的途径,你只需要回答几个问题就可以将R升级至最新版本,同时相应的程序包也会及时的得到更新。...你需要做的只是: install.packages("installr") library(installr) updateR() 然后就会提示最新的R版本,和是否需要拷贝老版本的R程序包目录,是否需要移除老的程序包目录以及是否更新新的版本中的程序包...总的来看,R的升级还是很成功的,使用起来也很方面。
定时任务在实际的开发中特别常见,比如电商平台 30 分钟后自动取消未支付的订单,以及凌晨的数据汇总和备份等,都需要借助定时任务来实现,那么我们本文就来看一下定时任务最简单的几种实现方式。...TOP 1:Timer Timer 是 JDK 自带的定时任务执行类,无论任何项目都可以直接使用 Timer 来实现定时任务,所以 Timer 的优点就是使用方便,它的实现代码如下: public class...TOP 3:Spring Task 如果使用的是 Spring 或 Spring Boot 框架,可以直接使用 Spring Framework 自带的定时任务,使用上面两种定时任务的实现方式,很难实现设定了具体时间的定时任务...Cron 表达式 Spring Task 的实现需要使用 cron 表达式来声明执行的频率和规则,cron 表达式是由 6 位或者 7 位组成的(最后一位可以省略),每位之间以空格分隔,每位从左到右代表的含义如下...使用 Redis 实现延迟任务的方法大体可分为两类:通过 ZSet 的方式和键空间通知的方式。
②不过区间在增加时,每次并不是增加一个长度,而是基于倍增思想,用二进制右移,每次增加2^i个长度 ,最多增加logn次 这样预处理了所有2的幂次的小区间的最值 关于倍增法链接 查询: ③对于每个区间...,分成两段长度为的区间,再取个最值(这里的两个区间是可以有交集的,因为重复区间并不影响最值) 比如3,4,6,5,3一种分成3,4,6和6,5,3,另一种分成3,4,6和5,3,最大值都是6,没影响。...)预处理,O(1)查询最值 但不支持修改 预处理时间复杂度O(nlogn),查询时间O(1)。...y-z+1)/log(2));//注意y-z要加一才为区间长度 return min(map[z][x],map[y-(1<<x)+1][x]);//分别以左右两个端点为基础,向区间内跳1<<x的最...次方的区间中的最大值,(注//意i到i的长度为一)。
O(n),但如果我们以 if 判断的次数作为算法效率的评估标准,算一下 for 循环中 if 语句的判断次数: 第一个算法显然需要固定2n次 if 比较,第二个算法最坏情况需要2n次 if 比较。...接下来,我们想办法优化这两个算法,使这两个算法只需要固定的1.5n次比较。 最大值和最小值 为啥一般的解法还能优化呢?肯定是因为没有充分利用信息,存在冗余计算。...因此,算法在 if else 的比较次数为 2,总的时间复杂度是多少呢?...这就涉及递归算法的复杂度分析,设算法的复杂度为 (n为递归函数处理的元素个数,或者称为问题规模),那么可以得到如下公式: 其中 是因为 2 个子问题的递归调用,每个子问题的规模是原来的 1/2;...有很多方法,比如说高中学过的「特征方程」,或者算法分析常用的「主定理」等等,对于这个问题很容易解,这里就直接写答案了: 可见分治法解决这个问题的比较次数基本上是1.5n,比一开始的算法最坏情况下2n的比较次数要好一些
首先,对比一下传统机器学习和深度学习的训练过程差异:下图展示了传统机器学习算法与深度学习技术在数据量方面的性能比较。从图表中可以明显看出,随着数据量的增加,深度学习算法的性能也随之提升。...相比之下,传统机器学习算法的性能虽然会在一定程度上提升,但之后会趋于稳定(表现为一条水平线)。...相比之下,传统机器学习算法在处理大数据集时可能会遇到计算瓶颈或性能下降的问题。...),是深度学习的代表算法之一。...工作原理贪心算法(Greedy Algorithm):DBN使用贪心算法进行预训练。这个算法通过逐层的方式学习每一层的生成性权重(generative weights)和自上而下的方法。
随机算法 从可用的节点中,随机挑选一个节点来访问。...轮询算法能够保证所有节点被访问到的概率是相同的。 在实现时,轮询算法通常是把所有可用节点放到一个数组里,然后按照数组编号,挨个访问。...适用场景: 跟随机算法类似,各个服务节点被访问的概率也基本相同,也主要应用在各个服务节点性能差异不大的情况下。...轮询算法能够保证所有节点被访问的概率相同,而加权轮询算法是在此基础上,给每个节点赋予一个权重,从而使每个节点被访问到的概率不同,权重大的节点被访问的概率就高,权重小的节点被访问的概率就小。...适用场景: 与加权轮询算法预先定义好每个节点的访问权重不同,采用最少活跃连接算法,客户端同服务端节点的连接数是在时刻变化的,理论上连接数越少代表此时服务端节点越空闲,选择最空闲的节点发起请求,能获取更快的响应速度
凯撒算法 概述 凯撒密码是罗马扩张时期朱利斯• 凯撒(Julius Caesar)创造的,用于加密通过信使传递的作战命令。它将字母表中的字母移动一定位置而实现加密。...这里,移动的位数“2”是加密和解密所用的密钥。...只要传入明文和偏移量即可加密,解密需要传入密文和负的偏移量就可以解密。...输出的结果: 原文:Hello 加密后:Jgnnq 解密后:Hello 安全性 凯撒密码由于加解密比较简单,密钥总共只有 26 个,攻击者得到密文后即使不知道密钥,也可一个一个地试过去,最多试...输出的结果: 原文:Hello 加密后:Jhpqu 解密后:Hello
摘要:从零开始学习机器学习最简单的 kNN 算法。 今天开始,我打算写写机器学习教程。说实话,相比爬虫,掌握机器学习更实用竞争力也更强些。...---- 02 kNN 算法介绍 接下来,我们就要从这个故事中开始接触机器学习了,机器学习给很多人的感觉就是「难」,所以我编了上面这个故事,就是要引出机器学习的一个最简单算法:kNN 算法(K-Nearest...学会 kNN 算法,只需要三步: 了解 kNN 算法思想 掌握它背后的数学原理(别怕,你初中就学过) 最后用简单的 Python 代码实现 在说 kNN 算法前说两个概念:样本和特征。...这就用到了 K 近邻算法思想。该算法首先需要取一个参数 K,机器学习中给的经验取值是 3,我们假设先取 3 ,具体取多少以后再研究。...我们使用 Python 手写完成了一个简易的 kNN 算法,是不是不难? 如果觉得难,来看一个更简单的方法:调用 sklearn 库中的 kNN 算法,俗称调包,只要 5 行代码就能得到同样的结论。
领取专属 10元无门槛券
手把手带您无忧上云