首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

线性回归---(最小二乘)

最小二乘法(又称最小平方法)是一种数学优化技术。误差的平它通过最小化方和寻找数据的最佳函数匹配。利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。...最小二乘法还可用于曲线拟合。其他一些优化问题也可通过最小化能量或最大化熵用最小二乘法来表达。...---- 上数值分析课的时候像是发现了新大陆,“最小二乘”不光是在解“矛盾方程”使用,在机器学习中也有使用,例如“线性回归”问题就是利用最小二乘的思想实现。...求b的分子和分母 ---- ? 3. 求出a,b ---- ? 4. 画出原始数据集,和求出的拟合曲线 ---- ? 5. 进行类的封装 ---- ? 6. 数据测试去,求出预测结果 ---- ?

1.3K10

最经典的线性回归模型参数估计算法——最小二乘

首先,我们要明白最小二乘估计是个什么东西?说的直白一点,当我们确定了一组数的模型之后,然后想通过最小二乘的办法来确定模型的参数。...举个两变量(一个自变量、一个因变量)线性回归的例子来说明一下,如下面所示一堆散点图。 ? 一堆观测数据绘制的散点图 上面这个图呢,我们打眼一看就想到:“这两个变量之间应该是一个线性的关系”。...这样,每条直线都可以有一个值,我们把这个距离的和最小的那条直线找出来,我们认为这条直线它最顺眼,因为它照顾到了所有的训练样本点的情绪,不偏不倚。这种方法就是最小二乘法。...公式9 又因为X'X是一个正定矩阵,所以公式9中的第二项它>=0,所以 ? 公式10 也就证明了我们的公式7中的β就是要找的那个β。...参考资料 王松桂,《线性统计模型——线性回归与方差分析》,高等教育出版社

2.7K60
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    最小二乘回归的Python实现

    回归分析是实现从数据到价值的不二法门。 它主要包括线性回归、0-1回归、定序回归、计数回归,以及生存回归五种类型。 我们来讨论最基础的情况——一元线性回归。...最常见的拟合方法是最小二乘法,即OLS回归。它时刻关注着实际测量数据,以及拟合直线上的相应估计值,目的是使二者之间的残差有最小的平方和。...即: 为了使残差的平方和最小,我们只需要分别对a、b求偏导,然后令偏导数等于0。立即推出a、b值: 总之,OLS回归的原理是,当预测值和实际值距离的平方和最小时,我们就选定模型中的参数。...P 值是用来判定假设检验结果的另一个参数。它是指统计概要与实际观测数据相同的概率,如果P值很小,说明原假设情况发生的概率很小。但偏偏这个小概率事件出现了,这时,根据小概率原理,我们就有理由拒绝原假设。...这时我们如果仍采用普通最小二乘法估计模型参数,就会产生一系列不良的后果,如:参数估计量非有效、变量的显著性检验失去意义、模型的预测失效等。 所以,在本文中我们首先进行简单的ols回归。

    2.6K60

    总体最小二乘(TLS)

    Steven M.Kay 的《统计信号处理—估计理论》中是这样介绍最小二乘估计的:最小二乘估计特点在于对观察数据没有任何概率假设,只需要假设一个信号模型,因此它不是最佳的,如果没有对数据的概率结构做出假设...我们注意到,采用最小均方误差准则的线性回归(Linear regression)和最小二乘解具有相同的形式。...一个良态问题(well-posed problem)是稳定的,然而实际上的问题往往是病态(ill-posed)。为此,在线性回归以及其他多种解决问题方案中采用了正则化方法。...应该是非满秩矩阵(由于噪声存在,一般都是满秩的),因此对应最小特征值的特征向量就是总体最小二乘解,多个相同最小二乘解时特征向量有多个,因此加上其他约束求解。具体方法本文不做论述。...就线性回归而言,一般情况下正则化方法应该会有更好的效果,总体最小二乘还是有太多的假设了。不知这一结论是否正确,还请大家指明或仿真分析。

    4.9K20

    线性回归(二)-违背基本假设的情况和处理方法

    基本假设 由线性回归(一)^1,我们通过数学中的极值原理推导出了一元线性回归的参数估计和多元线性回归的参数估计的拟合方程计算方法。...由于矩阵的行秩等于列秩,因此若自变量矩阵中存在线性相关的行或列,则经过转置相乘最后得出的矩阵必然存在线性相关的行或列,对于非满秩的矩阵在实数层面上无法求逆矩阵,因此在计算中要避免自变量中存在线性相关。...因此为了减少随机误差项的方差,可以通过调节自变量的方差进行处理。 加权最小二乘: 加权最小二乘的原理是通过调整自变量其在回归方程中所占的比例实现方差调整。...经过加权变换后的样本数据为: 最小二乘参数估计的导出公式为: 计算得到基于加权系数法的最小二乘公式结果: y = {{\hat \beta }_{\omega 0}} + {{\hat \beta...改良的实质是牺牲某些信息或精度为代价,使得模型的表现更实际、更可靠 岭回归 岭回归估计是基于最小二乘估计,通过改变自变量矩阵X标准化后的矩阵,来改变最终的回归结果。

    13.3K21

    最小二乘法,残差,线性模型-线性回归

    扩展资料: 普通最小二乘估计量具有上述三特性: 1、线性特性 所谓线性特性,是指估计量分别是样本观测值的线性函数,亦即估计量和观测值的线性组合。...这一性质就是著名的高斯一马尔可夫( Gauss-Markov)定理。这个定理阐明了普通最小二乘估计量与用其它方法求得的任何线性无偏估计量相比,它是最佳的。...最小二乘法:使得所选择的回归模型应该使所有观察值的残差平方和达到最小 如何求解模型参数和呢? 一种是解析法,也就是最小二乘。 另一个是逼近法,也就是梯度下降。...方法一:解析解法 线性回归模型的最小二乘“参数估计”(parameter estimation)就是求解和,使得最小化的过程。 是关于和的凸函数(意思是可以找到全局最优解)。...将表示为的一个参数,那么: 然后对求导就可以得到矩阵的解(忽略了很多推导过程): 这里求解析解存在的问题是 在现实任务中往往不是满秩矩阵,所以无法求解矩阵的逆,故无法求得唯一的解。

    16410

    线性回归中的多重共线性与岭回归

    在最小二乘法中,如果矩阵 中存在这种精确相关关系,则逆矩阵不存在,线性回归无法使用最小二乘法求出结果 无解 即当 则会发生除零错误 。...正常值 由此可见,一个矩阵如果要满秩,则要求矩阵中每个向量之间不能存在多重共线性,这也构成了线性回归算法对于特征矩阵的要求。...该模型求解的回归模型的损失函数为线性最小二乘函数,正则化采用l2-范数。也称为岭回归(Ridge Regression)或吉洪诺夫正则化(Tikhonov regularization)。...假设原本的特征矩阵存在共线性,即非满秩矩阵 最后得到的这个行列式还是一个梯形行列式,但已经不存在全0行或者全0列了,除非以下两种情况,否则矩阵 永远都是满秩。...除常数项以外,这种回归的假设与最小二乘回归类似;它收缩了相关系数的值,但没有达到零,这表明它没有特征选择功能,这是一个正则化方法,并且使用的是L2正则化。

    2.1K10

    R语言中的偏最小二乘PLS回归算法

    p=4124 偏最小二乘回归: 我将围绕结构方程建模(SEM)技术进行一些咨询,以解决独特的业务问题。我们试图识别客户对各种产品的偏好,传统的回归是不够的,因为数据集的高度分量以及变量的多重共线性。...PLS是处理这些有问题的数据集的强大而有效的方法。 主成分回归是我们将要探索的一种选择,但在进行背景研究时,我发现PLS可能是更好的选择。我们将看看PLS回归和PLS路径分析。...我不相信传统的扫描电镜在这一点上是有价值的,因为我们没有良好的感觉或理论来对潜在的结构做出假设。此外,由于数据集中的变量数量众多,我们正在将SEM技术扩展到极限。....,2004年,“初步指南偏最小二乘分析”,Understanding Statistics,3(4),283-297中可以找到关于这个限制的有趣讨论。...关于PLS回归的一个有趣的事情是你可以有多个响应变量,plsdepot可以适应这种类型的分析。在这种情况下,我只想分析一个Y变量,那就是价格。

    1.5K20

    《机器学习》-- 第三章 线性回归

    基于均方误差最小化来进行模型求解的方法称为“最小二乘法” (least square method)。在线性回归中,最小二乘法就是试图找到一条直线,使所有样本到直线上的欧氏距离之和最小。 ?...最小化的过程,称为线性回归模型的最小二乘“参数估计” (parameter estimation)。这里 ? 是关于 ? 和 ?...和一元的情况类似,依然使用最小二乘法来对 ? 和 ? 进行估计,但是对于多元问题,我们使用矩阵的形式来表示数据。为便于讨论,我们把 ? 和 ? 吸收入向量形式 ?...,它是一个方阵,这是一个很好的性质,但是它却不一定满秩(比如音频,基因等,都可能特征数量大于(甚至远大于)样例数量),只有当其为满秩矩阵( full-rank matrix) 或正定矩阵(positive...现我们假设该方阵是满秩的情况,令 ? 则多元线性回归模型可以表示为 ? 对于现实任务中 ? 不是满秩矩阵的情况,此时可解出多个 ?

    69020

    多元线性回归模型

    该模型称为多元线性回归模型, 称Y为因变量,X为自变量。 要建立多元线性回归模型,我们首先要估计未知参数β,为此我们要进行n(n>=p)次独立观测,得到n组数据(称为样本)。...则有了以下的矩阵形式: Y = Xβ+ε; 其中Y称为观测向量,X称为设计矩阵,它们是由观测数据得到的,是已知的,并假定X是列满秩的。 β是待估计的未知参数向量,ε是不可观测的随机误差向量。...上式称为多元统计回归模型的矩阵形式。 2、β和σ²的估计 经过一番计算,得出β的最小二乘估计: ? β的最大似然估计和它的最小二乘估计一样。 误差方差σ²的估计: ? 为它的一个无偏估计。...3、有关的统计推断 3.1 回归关系的统计推断 给定因变量Y与自变量X的n组观测值,利用前面的方法可以得到未知参数β和σ²的估计,从而得出线性回归方程,但所求的方程是否有意义,也就是说XY之间是否存在显著的线性关系...3.2 线性回归关系的显著性检验 检验假设: ? 若H0成立,则XY之间不存在线性回归关系。 构建如下检验统计量: ?

    2.7K30

    R语言中的偏最小二乘回归PLS-DA

    主成分回归(PCR)的方法 本质上是使用第一个方法的普通最小二乘(OLS)拟合来自预测变量的主成分(PC)(点击文末“阅读原文”获取完整代码数据)。 这带来许多优点: 预测变量的数量实际上没有限制。...(_x_轴)训练的模型中获得的平均准确度(_y_轴,%)。...现在,我们 进行线性判别分析(LDA)进行比较。我们还可以尝试一些更复杂的模型,例如随机森林(RF)。 最后,我们可以比较PLS-DA,PCA-DA和RF的准确性。...我们将使用resamples编译这三个模型,并借用ggplot2的绘图功能来比较三种情况下最佳交叉验证模型的50个准确性估计值。 显然,长时间的RF运行并没有转化为出色的性能,恰恰相反。...这可能是一个有趣的癌症生物标志物。当然,必须进行许多其他测试和模型来提供可靠的诊断工具。 本文选自《R语言中的偏最小二乘回归PLS-DA》。

    34610

    R语言中的偏最小二乘回归PLS-DA

    p=8890 主成分回归(PCR)的方法 本质上是使用第一个方法的普通最小二乘(OLS)拟合 来自预测变量的主成分(PC)。这带来许多优点: 预测变量的数量实际上没有限制。...相关的预测变量不会破坏回归拟合。  但是,在许多情况下,执行类似于PCA的分解要明智得多。 今天,我们将 在Arcene数据集上执行PLS-DA,  其中包含100个观察值和10,000个解释变量。...(x轴)训练的模型中获得的平均准确度(y轴,%)。 ...现在,我们 进行线性判别分析(LDA)进行比较。 我们还可以尝试一些更复杂的模型,例如随机森林(RF)。  最后,我们可以比较PLS-DA,PCA-DA和RF的准确性。 ...我们将使用caret :: resamples编译这三个模型,并借用ggplot2的绘图功能来比较三种情况下最佳交叉验证模型的50个准确性估计值。

    1.8K11

    R语言中的偏最小二乘回归PLS-DA

    p=8890 主成分回归(PCR)的方法 本质上是使用第一个方法的普通最小二乘(OLS)拟合来自预测变量的主成分(PC)(点击文末“阅读原文”获取完整代码数据)。...相关视频 这带来许多优点: 预测变量的数量实际上没有限制。 相关的预测变量不会破坏回归拟合。 但是,在许多情况下,执行类似于PCA的分解要明智得多。...(_x_轴)训练的模型中获得的平均准确度(_y_轴,%)。...现在,我们 进行线性判别分析(LDA)进行比较。我们还可以尝试一些更复杂的模型,例如随机森林(RF)。 最后,我们可以比较PLS-DA,PCA-DA和RF的准确性。...我们将使用resamples编译这三个模型,并借用ggplot2的绘图功能来比较三种情况下最佳交叉验证模型的50个准确性估计值。 显然,长时间的RF运行并没有转化为出色的性能,恰恰相反。

    9010

    《机器学习》笔记-线性模型(3)

    基于均方误差最小化进行模型求解的方法称为“最小二乘法”(least square method)。在线性回归中,最小二乘法就是输入找到一条直线,使所有样本到直线上的欧式距离之和最小。...最小化的过程,称为线性回归模型的最小二乘“参数估计”(parameter estimation)。我们可以将E(w,b)分别对w和b求导,得到, ?...这称为“多元线性回归”(multivariate linear regression)。 类似的,可利用最小二乘法来对w和b进行估计。为了便于讨论,我们把w和b吸入向量形式, ?...为满秩矩阵(full-rank matrix)或正定矩阵(positive definite matrix)时,可求得, ? 然而,显示任务中[公式2-1]往往不是满秩矩阵。...例如许多任务中我们会遇到大量的变量,其数目甚至超过样例数,导致X的列数大于行数,[公式2-1]显然不满秩。此时可解出多个w,他们都能使均方误差最小化。

    1K40

    R语言线性模型臭氧预测: 加权泊松回归,普通最小二乘,加权负二项式模型

    p=11386  在这篇文章中,我将从一个基本的线性模型开始,然后从那里尝试找到一个更合适的线性模型。...作为基准模型,我们将使用普通的最小二乘(OLS)模型。...由于残差不是真正的正态分布,因此线性模型不是最佳模型。实际上,残差似乎遵循某种形式的泊松分布。为了找出最小二乘模型的拟合对离群值如此之差的原因,我们再来看一下数据。...处理负面的臭氧水平预测 让我们首先处理预测负臭氧水平的问题。 截短的最小二乘模型 处理负面预测的一种简单方法是将其替换为尽可能小的值。这样,如果我们将模型交给客户,他就不会开始怀疑模型有问题。...[testset])  的 [R2[R2值0.616表示泊松回归比普通最小二乘(0.604)稍好。

    1.1K00

    Tikhonov正则化选取的方法

    最小二乘矩阵求解与正则化,最小二乘是最常用的线性参数估计方法,早在高斯的年代,就用开对平面上的点拟合线,对高维空间的点拟合超平面。?...作为最小二乘代价函数的改进 式中 则称为正则化参数 (regularization...Tikhonov 正则化在信号处理和图像处理中有时也称为松弛法(relaxation method)Tikhonov 正则化的本质是通过对非满秩的矩阵A的协方差矩阵 的每一个对角元素加入一个很小的扰动...使得奇异的协方差矩阵 求逆变为非奇异矩阵 的求逆,从而大大改善求解非满秩矩阵 的数值稳定性 也就是降低cond条件数的大小。...其实这两个公式可以合并, 本身就带有符号属性,当取得正值的时候是对矩阵的约束,迫使原来的对角协方差元素减少,取得负值的时候就是分离残差.取0的时候就是普通最小二乘。

    4.6K10

    8种用Python实现线性回归的方法,究竟哪个方法最高效?

    这个强大的函数来自scipy.optimize模块,可以通过最小二乘最小化将任意的用户自定义函数拟合到数据集上。 对于简单的线性回归来说,可以只写一个线性的mx + c函数并调用这个估计函数。...不言而喻,它也适用于多元回归,并返回最小二乘度量最小的函数参数数组以及协方差矩阵。 方法四:numpy.linalg.lstsq 这是通过矩阵分解计算线性方程组的最小二乘解的基本方法。...如果a是方阵且满秩,则x(四舍五入)是方程的“精确”解。 你可以使用这个方法做一元或多元线性回归来得到计算的系数和残差。一个小诀窍是,在调用函数之前必须在x数据后加一列1来计算截距项。...每个估计对应一个泛结果列表。可根据现有的统计包进行测试,从而确保统计结果的正确性。 对于线性回归,可以使用该包中的OLS或一般最小二乘函数来获得估计过程中的完整的统计信息。...方法六和七:使用矩阵的逆求解析解 对于条件良好的线性回归问题(其中,至少满足数据点个数>特征数量),系数求解等价于存在一个简单的闭式矩阵解,使得最小二乘最小化。

    2.9K50

    数学建模及其基础知识详解(化学常考知识点)

    5、混合方法:组合评价法 二、插值和拟合(数值计算方法) 1、插值 1.1、牛顿插值 1.2、拉格朗日插值 1.3、埃米尔特插值 1.4、样条插值 2、拟合 2.1最小二乘拟合 2.2最佳逼近(...多数情况下, 基于秩的估计量适用于小规模的数据集以及特定的假设检验。...(小样本) 四、回归 (参考:超级干货 :一文读懂回归分析 ) 1、线性回归、局部加权线性回归 2、多元回归(估计方法的分为普通、广义最小二乘法,广义允许在误差项存在异方差或自相关,注意拟合优度指标...共线性的存在会使得回归系数的最小二乘估计量误差较大。通过方差膨胀因子(Variance inflation factor)和容忍度(tolerance)来诊断多重共线性,VIF和容忍度两者互为倒数。...4、岭回归(加入L2正则线性回归,在一般的线性回归最小化均方误差的基础上增加了一个参数w的L2范数的罚项,从而最小化罚项残差平方和,即在普通线性回归的基础上引入单位矩阵。)

    91710

    《spss统计分析与行业应用案例详解》实例26非线性回归分析 27加权最小二乘回归分析

    非线性回归分析的功能与意义 它是一种功能更强大的处理非线性问题的方法,它可以使用户自定义任意形式的函数,从而更加准确地描述变量之间的关系 相关数据 ?...参与培训的天数与长期表现指数 分析过程 分析-回归-非线性 ? ? 其他设置默认值 结果分析 (1)参数估计值 ? 两个参数的直线区间都不含0,所以两个参数值都有统计学意义。...加权最小二乘回归的功能与意义 在标准的线性回归模型中,有一个基本假设是整个总体同方差也就是因变量的变异不随自身预测值以及其他自变量值的变化而变动。然而实际问题中这一假设并不被满足。...加权最小二乘回归分析就是为了解决这一问题而设计的,其基本原理是不同的数据赋予不同的权重以平衡不同变异数据的影响。 相关数据 ? 分析过程 分析-回归-权重估计 ?...模型综述 数据经过简单观察,不能确定整个总体同方差的变异不随自身预测值以及其他自变量值的变化而变动这一条件成立,所以用加权最小二乘回归分析 结论:y=0.125+39.748*x

    2.1K20

    线性回归的正则化改进(岭回归、Lasso、弹性网络),最小二乘法和最大似然估计之间关系,正则化

    最小二乘法和最大似然估计之间关系 对于最小二乘法,当从模型总体随机抽取n组样本观测值后,最合理的参数估计量应该使得模型能最好地拟合样本数据,也就是估计值和观测值之差的平方和最小。...与最小二乘 法不同的是,最大似然法需要已知这个概率分布函数,这在时间中是很困难的。一般假设其满足正态分布函数的特性,在这种情况下,最大似然估计和最小二乘估计相同。...最小二乘法以估计值与观测值的差的平方和作为损失函数,极大似然法则是以最大化目标值的似然概率函数为目标函数,从概率统计的角度处理线性回归并在似然概率函数为高斯函数的假设下同最小二乘建立了的联系。...:将乘法转化为加法增加log 最小二乘法=只是极大似然估计在高斯分布下的一种特殊形式 极大似然估计就是变化形式最小二乘法 极大似然估计 就是高斯分布下的特殊形式 【机器学习】重新理解线性回归 -...岭回归的特点 岭回归是一种改良的最小二乘估计法,通过放弃最小二乘法的无偏性,以损失部分信息、降低精度为代价获得回归系数,它是更为符合实际、更可靠的回归方法,对存在离群点的数据的拟合要强于最小二乘法。

    21010
    领券