听说程序员里存在一个鄙视链,而前端则在鄙视链的最底端。这是因为以前大多数的前端工作内容都相对简单(或许现在也是如此),在大多数人的眼中,前端只需要写写 HTML 和 CSS,编写页面样式便完成了。
LSD是一种线段检测算法,该方法号称是能在线性时间(linear-time)内得到亚像素级准确度的直线段检测算法。LSD的目标在于检测图像中局部的直的轮廓,这也是我们称之为直线分割的原因。
由于噪声和光照的影响,物体的轮廓会出现不规则的形状,根据不规则的轮廓形状不利于对图像内容进行分析,此时需要将物体的轮廓拟合成规则的几何形状,根据需求可以将图像轮廓拟合成矩形、多边形等。本小节将介绍OpenCV 4中提供的轮廓外接多边形函数,实现图像中轮廓的形状拟合。
该方法用于求取输入二维点集合的最小外接矩形。返回值为RotateRect对象。RotateRect类型和Rect类型虽然都是表示矩形,但是在表示方式上有一定的区别。通过查看成员变量可以很明显的看到差异。Rect是通过左上角的坐标来定位,默认横平竖直,然后通过宽高确定大小。而RotateRect则是通过center确定位置,angle结合宽高,计算各顶点的坐标,从而确定矩形。
继去年上半年一鼓作气研究了几种不同的模版匹配算法后,这个方面的工作基本停滞了有七八个月没有去碰了,因为感觉已经遇到了瓶颈,无论是速度还是效率方面,以当时的理解感觉都到了顶了。年初,公司业务惨淡,也无心向佛,总要找点事情做一做,充实下自己,这里选择了前期一直想继续研究的基于离散夹角余弦相似度指标的形状匹配优化。
HNSW(Hierarchical Navigable Small Word)算法算是目前推荐领域里面常用的ANN(Approximate Nearest Neighbor)算法了。
CW,广东深圳人,毕业于中山大学(SYSU)数据科学与计算机学院,毕业后就业于腾讯计算机系统有限公司技术工程与事业群(TEG)从事Devops工作,期间在AI LAB实习过,实操过道路交通元素与医疗病例图像分割、视频实时人脸检测与表情识别、OCR等项目。
算法工程师成长计划 近年来,算法行业异常火爆,算法工程师年薪一般20万~100 万。越来越多的人学习算法,甚至很多非专业的人也参加培训或者自学,想转到算法行业。尽管如此,算法工程师仍然面临100万的人才缺口。缺人、急需,算法工程师成为众多企业猎头争抢的对象。 计算机的终极是人工智能,而人工智能的核心是算法,算法已经渗透到了包括互联网、商业、金融业、航空、军事等各个社会领域。可以说,算法正在改变着这个世界。 下面说说如何成为一个算法工程师,万丈高楼平地起,尽管招聘启事的算法工程师都要求会机器学习,或数据挖
返回值ellipse: ((226.83999633789062, 62.23775100708008), (103.79611206054688, 110.34321594238281), 80.08370208740234
2015年我出版了个人第一本关于图像处理方面的书籍《Java图像处理-编程技巧与应用实践》,这本书主要是从理论与编码上面详细阐述了图像处理基础算法以及它们在编码实现上的技巧。一转眼已经三年过去了,在这三年的时光里我无时无刻都在关注图像处理与计算机视觉技术发展与未来,同时渐渐萌发了再写一本图像处理相关技术书籍的念头,因为《Java图像处理-编程技巧与应用实践》一书主要不是针对工程应用场景,读者在学完之后很难直接上手开始做项目,所以把第二本书定位为工程实战书籍类型,可以帮助大家解决工程与项目实际技术问题。OpenCV是英特尔开源出来的计算机视觉框架,有着十分强大的图像与视频分析处理算法库。借助OpenCV框架,Android程序员可以在不关心底层数学原理的情况下,解决人脸检测、OCR识别、AR应用开发,图像与视频分析处理,文本处理等Androd开发者经常遇到问题,考虑这些真实需求,本着从易到难的原则,列出了提纲,得到机械工业出版社 杨绣国编辑 肯定与大力支持,于是才有《OpenCV Android开发实战》一书的写作与出版。
本文介绍在ArcMap软件中,基于一个面图层,绘制其中面要素的最小外接矩形、最小外接圆等的方法。
单个返回值形式: retval= ((226.83999633789062, 62.23775100708008), (103.79611206054688, 110.34321594238281), 80.08370208740234) 三个返回值形式: (x,y)=( 226.83999633789062 62.23775100708008 ) (MA, ma)=( 103.79611206054688 110.34321594238281 ) angle= 80.08370208740234
注意轮廓特征计算的结果并不等同于像素点的个数,而是根据几何方法算出来的,所以有小数。
调用该API会返回一个Rect对象实例,它是OpenCV关于矩形的数据结构, 从中可以得到外界矩形(边界框)的宽高, 然后就可以计算出轮廓的横纵比了。
本文提出了一种基于生长的棋盘格角点检测方法,可以自动检测并识别棋盘格角点。该方法通过定义两种不同的角点原型,利用非极大值抑制来精细化角点位置,并优化能量函数来生长出更多的棋盘格。实验证明,该方法可以有效地检测出各种尺度和旋转角度的棋盘格,对于不同纹理和遮挡情况的棋盘格也有着较好的鲁棒性。
实际上包围形状的图形某些情况下会使用多边形(凸包、凹包)或是圆形或是其他,不仅限于矩形的更泛用的叫法应该是 “包围体”(bounding volume)。
OpenCV利用findContours找到图像中的轮廓,根据这些轮廓的特征进行筛选有利于进一步逼近最终的兴趣区域,减少其他算法的时间,提高代码的运行效率,而对轮廓的绘图则可以直观的看到筛选结果。 其
Liang-Barsky参数化裁剪算法是计算机图形学领域一个经典算法,用来对二维直线进行快速裁剪,使得仅需要绘制直线段落在裁剪窗口中的部分,不显示裁剪窗口之外的内容。
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
使用OpenCV实现偏斜文档校正 纸质文档扫描中经常会发生扫描出来的图像有一定角度的偏斜,对后期的文档信息化OCR提取造成很大的干扰,导致OCR识别准确率下降从而影响文档信息化的结果。这个时候可以使用OpenCV对文档进行纠偏,最常见的文本纠偏算法有两种,分别是 基于FFT变换以后频率域梯度 基于离散点求最小外接轮廓 这两种方法各有千秋,相对来说,第二种方法得到的结果更加准确,第一种基于离散傅立叶变换求振幅的方法有时候各种阈值选择在实际项目中会有很大问题。 基于FFT变换以后频率域梯度 主要思路是先把图像转
一个直矩形(就是没有旋转的矩形)。它不会考虑对象是否旋转。 所以边界矩形的面积不是最小的。 可以使用函数 cv2.boundingRect() 查找得到
补充知识:opencv python 轮廓特征/凸包/外接矩形/外接圆/拟合矩形/拟合直线/拟合圆
二值图像分析最常见的一个主要方式就是轮廓发现与轮廓分析,其中轮廓发现的目的是为轮廓分析做准备,经过轮廓分析我们可以得到轮廓各种有用的属性信息、常见的如下:
最小外接矩形的 角度范围是 【-90,0】 注意是左闭右闭。水平矩形角度 -90, wh互换,意思是 例如:真实水平矩形 w——100 , h——50,那么用minAreaRect求得theta——(-90),w——50, h——100
K近邻法(k-nearest neighbors,KNN)是一种很基本的机器学习方法了,在我们平常的生活中也会不自主的应用。比如,我们判断一个人的人品,只需要观察他来往最密切的几个人的人品好坏就可以得出了。这里就运用了KNN的思想。KNN方法既可以做分类,也可以做回归,这点和决策树算法相同。
获取车牌轮廓上的点集后,可用cv2.minAreaRect()获取点集的最小外接矩形。返回值rect内包含该矩形的中心点坐标、高度宽度及倾斜角度等信息,使用cv2.boxPoints()可获取该矩形的四个顶点坐标。
上一篇中我们学习了《C++ OpenCV使用InRange对HSV颜色进行分割》,本身通过视频中可以看到我们通过颜色把按摩器提取了出来,这次我们基于上一章的成果,在上面实现原视频中的物体标识出来,呈现出追踪的效果。
Apriori算法是常用于挖掘出数据关联规则的算法,能够发现事物数据库中频繁出现的数据集,这些联系构成的规则可帮助用户找出某些行为特征,以便进行企业决策。例如,某食品商店希望发现顾客的购买行为,通过购物篮分析得到大部分顾客会在一次购物中同时购买面包和牛奶,那么该商店便可以通过降价促销面包的同时提高面包和牛奶的销量。了解Apriori算法推导之前,我们先介绍一些基本概念。
采用卷积神经的目标检测算法大致可以分为两个流派,一类是以 R-CNN 为代表的 two-stage,另一类是以 YOLO 为代表的 one-stage,
排序算法是最基本最常用的算法,不同的排序算法在不同的场景或应用中会有不同的表现,我们需要对各种排序算法熟练才能将它们应用到实际当中,才能更好地发挥它们的优势。今天,来总结下各种排序算法。 下面这个表
1.1什么是轮廓 轮廓可以简单认为成连续的点(连着边界)连在一起的曲线,具有相同的颜色或者灰度。轮廓在形状分析和物体的检测和识别中很有用。
在上一篇文章当中我们一起学习了Kmeans这个聚类算法,在算法的最后我们提出了一个问题:Kmeans算法虽然效果不错,但是每一次迭代都需要遍历全量的数据,一旦数据量过大,由于计算复杂度过大迭代的次数过多,会导致收敛速度非常慢。
今天要干什么?在一张图片上通过传统算法来检测矩形。为了防止你无聊,先上一组对比图片。
在图像处理的应用场景中常常会遇到一种情况,本来是一个整体的目标,因为不同的亮度或其他原因导致它分割成多个部分,这种情况在用OpenCV处理的时候会被当成多个轮廓(如下图所示),那么遇到这种情况,我们如何把不同的轮廓合并成一个轮廓,然后做后续的处理呢?
shapely是python中开源的空间几何对象库,支持Point(点),LineString(线), Polygon(面)等几何对象及相关空间操作。
前一篇《C++ OpenCV透视变换综合练习》中针对透视变换做了一个小练习,上篇中我们用多边形拟合的点集来计算离最小旋转矩形最近的点来定义为透视变换的点,效果是有,无意间又想了一个新的思路,在原来的点的基础上效果会更好一点,其中就用到了直线拟合的方法,今天这篇就说一下优化的思路及直线拟合的函数。
有了之前的铺垫和理论,本文就用一些现实中的实际数据进行一些具体的算法的应用。数据为网络访问日志文件,主要选择了单位时间内的访问请求次数与单位访问中的动作数作为二维特征,并且便于可视化的显示,下面分别进
Halcon例程中有一个焊点检测例程ball.hdev,大家可以在例程中搜索查看,如下是实例使用的测试图和运行结果图:
前面我们学习了轮廓提取,正常我们在提到到轮廓截取出来时一般需要是矩形的图像,这次我们就来学习一下轮廓周围绘制矩形等。
经常用到轮廓查找和多边形拟合等opencv操作,因此记录以备后续使用。本文代码中的阈值条件对图片没有实际意义,仅仅是为了测试。
之前吃串串火锅,老板数竹签不是称重就是用手慢慢数,但是称重似乎总是得不到正确的竹签数目,而且容易暗箱操作;而慢慢数总是要等待比较长的时间,感觉两者对处理数竹签的问题都存在比较大的缺陷。因此,一款可以数竹签的应用因此产生,一下就弥补了两种处理方式所存在的缺陷。
本文对华中科大、阿里巴巴合作完成的、发表在AAAI 2020的论文《All You Need Is Boundary: Toward Arbitrary-Shaped Text Spotting》进行解读。
感兴趣区域(ROI,region of interest),在机器视觉、图像处理中,在被处理的图像上以方框、圆、椭圆、不规则多边形等方式勾勒出需要处理的区域,称为感兴趣区域,简称ROI。在图像处理领域,感兴趣区域是从图像中选择的一个图像区域,这个区域是图像分析所关注的重点。圈定该区域以便进行进一步处理,或使用ROI圈定你想处理的目标,可以减少处理时间,提高精度。
记忆中,一个下班的夜晚,她从人群中轻盈的移动着,那高挑苗条的身材像漂浮在空间中的一个飘逸的音符。她的眼睛充满清澈的阳光和活力,她的双眸中印着银河系的星光。
总第54篇 算法目的:分类、预测 算法分类:监督型、非监督型 算法的核心:你有什么数据、你要解决什么问题 ---- 01|线性回归: 1、什么是回归 回归,指研究一组随机变量(Y1 ,Y2 ,…,Yi)和另一组(X1,X2,…,Xk)变量之间关系的统计分析方法,又称多重回归分析。 2、回归算法 根据给予的训练集训练出一定的回归模型(即找出最佳回归直线 ),通过给训练出来的回归模型输入测试集即可得出相应的预测结果值。下图为工资与奖金的回归模型。 test点到回归直线距离的平方和称为残差平方和,这部分
前面给大家分别汇总了OpenCV中支持的图像分类与对象检测模型,视觉视觉任务除了分类与检测还有很多其他任务,这里我们就来OpenCV中支持的非分类与检测的视觉模型汇总一下。注意一点,汇总支持的模型都是OpenCV4.4 Github上已经提供的,事实上除了官方的提供的模型,读者还可以自己探索更多非官方模型支持。这里的汇总模型主要来自OpenCV社区官方测试过的。
本专栏将逐一盘点自然语言处理、计算机视觉等领域下的常见任务,并对在这些任务上取得过 SOTA 的经典模型逐一详解。前往 SOTA!模型资源站(sota.jiqizhixin.com)即可获取本文中包含的模型实现代码、预训练模型及 API 等资源。
以前的文章《C++ OpenCV之透视变换》介绍过透视变换,当时主要是自己固定的变换坐标点,所以在想可不可以做一个通过轮廓检测后自适应的透视变换,实现的思路通过检测主体的轮廓,使用外接矩形和多边形拟合的四个最边的点进行透视变换。
轮廓特征和轮廓匹配是图像处理中用于描述和比较轮廓的技术。通过提取轮廓的形状、面积、周长等特征,并进行比较和匹配,我们可以实现目标识别、形状分析等应用。在本文中,我们将以轮廓特征和轮廓匹配为中心,为你介绍使用 OpenCV 进行轮廓处理的基本步骤和实例。
领取专属 10元无门槛券
手把手带您无忧上云