大家好,又见面了,我是你们的朋友全栈君。 给定一张 N 个点 M 条边的无向图,求无向图的严格次小生成树。...设最小生成树的边权之和为 sum,严格次小生成树就是指边权之和大于 sum 的生成树中最小的一个。 输入格式 第一行包含两个整数 N 和 M。...接下来 M 行,每行包含三个整数 x,y,z,表示点 x 和点 y 之前存在一条边,边的权值为 z。 输出格式 包含一行,仅一个数,表示严格次小生成树的边权和。...(数据保证必定存在严格次小生成树) 数据范围 N≤105,M≤3×105 输入样例: 5 6 1 2 1 1 3 2 2 4 3 3 5 4 3 4 3 4 5 6 输出样例: 11 #include
活成自己喜欢的样子,干嘛要在意别人的眼光。 最小生成树,学了好久了,理论学起来简单易懂,代码一直也没写,今天补起来。 自己太菜了,只能背板子了。 我只是板子的搬运工,哪里需要哪里套。...最小生成树——水题HDU1233 Kruskal #include #include using namespace std; int n; struct node...mp[i].w; } int N =(n-1)*n/2;//n个顶点可能共有这些边 sort(mp+1,mp+1+n,cmp);//kruskal算法从最小边开始...int k = 0,sum=0; for(int i =1;i<=N;++i) { if(k==n-1)//n个顶点的连通图最少有...{ k++; join(mp[i].x,mp[i].x); sum+=mp[i].w;//记录最小距离
本篇我们会聊聊最小生成树,最小生成树和之前的无向图最大的区别是这个每一条边都是带有权重的。在聊最小生成树之前 我们要先聊两个理念,因为最小生成树是基于这两个理念的基础上得到的相关数据结构算法。...在一幅加权图中,给定任意的切分,他的横切边中权重最小者必然属于图的最小生成树。...第二 是我们常见的一个贪心算法,这个大家都熟所以不细述了。 在这里的应用就是找到最小生成树的一条边,不断重复直到找到最小生成树的所有边。...而最小生成树也主要用到了这两种理念,我先找到最小的一条边,生成一副图,然后找所有节点到这副图最小的权重,然后加入这图中,直至所有节点全部加入为止,这个最小生成树就算完成了,如下图。 ?...现在常用在最小生成树的算法代码是prim算法 package com.jimmysun.algorithms.chapter4_3; import com.jimmysun.algorithms.chapter1
和prim算法以顶点为出发点不同,kruskal算法以边为中心,将所有边以小到大排序,遍历边,如果当前边的两个顶点有一个没有访问过,则记录该边,直到记录的边到达顶点数-1时,即所有顶点都可以相连,为最小生成树...,值为边的另一端顶点 int[] edgeIndex = new int[verticeSize]; //存放最小边 Edge[]...= end) { if (start < end) {//我们用的是最远顶点,该判断保证有小到大指向的 edgeIndex...index; i++) { lengh += edges[i].weight; } System.out.println("最小生成树的权值...4] = v4; graph.matrix[5] = v5; graph.matrix[6] = v6; graph.kruskal(); 结果: 最小生成树的权值
给定一张 N 个点 M 条边的无向图,求无向图的严格次小生成树。 设最小生成树的边权之和为 sum,严格次小生成树就是指边权之和大于 sum 的生成树中最小的一个。...接下来 M 行,每行包含三个整数 x,y,z,表示点 x 和点 y 之前存在一条边,边的权值为 z。 输出格式 包含一行,仅一个数,表示严格次小生成树的边权和。...(数据保证必定存在严格次小生成树) 数据范围 N≤105,M≤3×105 输入样例: 5 6 1 2 1 1 3 2 2 4 3 3 5 4 3 4 3 4 5 6 输出样例: 11 #include
最小生成树需要一个加权连通图,连通图就是所有顶点都是连在一起的,从任意一个顶点,都能到达除本身外任意一个顶点 prim算法:将顶点分成两个集合 U和 V,U用来存放每次遍历得到的与U中顶点最小路径的邻接顶点...U初始化存放任意一个顶点,每次从V中遍历得到与U集合中的顶点最小路径的顶点后,放入U,将V中的对应顶点删除,当U存放到所有顶点后,最小生成树就得到了。...利用之前的类实现prim算法: public void prim() { //权最小的边 int[] minWeigth = new int...//获取下最小的边 for (int j = 0; j < verticeSize; j++) { if (minWeigth[j...(int j = 0; j < verticeSize; j++) { //minWeigth中本身存放着最小边,只要将mid顶点的最小边集合和当前集合合并
Destroy Walls Time Limit: 8000/4000 MS (Java/Others) Memory Limit: 132768/132768 K (Java/Others)...这个国王被围起来,他要访问它所有的城市,必然要拆遍,不然出不去,就是说拆掉多少遍,使图成为联通的,也就是说不会保留环即可,无论这个国王在哪,这个图只要有环,就不能遍历,所以跟每个点的坐标没有任何关系,直接剔除环中的最小边...我们要使剃边花费最小,那么就要使剃边后剩下的无向无环图的边权和最最大,因为剔除环中最小边,不能保证提出的和最小,所以一遍最大生成树。
prim算法 普里姆算法(Prim算法),图论中的一种算法,可在加权连通图里搜索最小生成树。...Enew中; 4).输出:使用集合Vnew和Enew来描述所得到的最小生成树。...证明编辑 这样的步骤保证了选取的每条边都是桥,因此图G构成一个树。 为什么这一定是最小生成树呢?关键还是步骤3中对边的选取。...算法中总共选取了n-1条边,每条边在选取的当时,都是连接两个不同的连通分量的权值最小的边 要证明这条边一定属于最小生成树,可以用反证法:如果这条边不在最小生成树中,它连接的两个连通分量最终还是要连起来的...也就是说,如果不选取这条边,最后构成的生成树的总权值一定不会是最小的。
本文最后更新于 1163 天前,其中的信息可能已经有所发展或是发生改变。
生成树:给定无向图G=(V,E),连接G中所有点,且边集是E的n-1条边构成的无向连通子图称为G的生成树(Spanning Tree),而边权值总和最小的生成树称为最小生成树(Minimal Spanning...常见两种算法: Kruskal Prim算法 定理 任意一棵最小生成树一定包含无向图中权值最小的边。 证明 反证法:假设图G=(V,E)存在一棵最小生成树且不包含权值最小的边e=(x,y,z)。...若再从剩余的m-k条边中选n-1-k条添加到生成森林中,使其成为G的生成树,并且选出的边的权值之和最小,则该生成树一定包含这m-k条边中连接生成森林的两个不连通节点的权值最小的边。...0:ans;//返回最小生成树的最大权值;不存在则返回0 } Prim算法 依旧基于之前的推论。...区别在于,Kruskal算法是通过对边的寻找连接两个非连通节点的最小权值的边;而prim则是通过对点的寻找去确定最小权值的边。 最初,prim算法仅确定1号节点属于最小生成树。
最小生成树 对于一个图,我们可以把它转换成一颗树(联通图)或者是多棵树(非联通树)。 对于一个带权值的联通图,最小生成树就是它的所有生成树中边权值和最小的生成树。...Prim算法 Prim算法就是一种用来生成最小生成树的算法。 由一个带权值的联通图到一个最小生成树的过程,其实就是从图的所有边中挑出一部分边用来组成树的过程,所以关键在于如何挑选边。...对于Prim算法,它的具体操作是这样的: 对于给定的一个起点节点(Prim算法必须给它一个起点),先找出这个节点连接的所有节点所组成的边中权值最小的边,作为最小生成树的第一条被挑选出来的边,现在我们有两个节点了对吧...然后以这两个节点为基础,继续找出这两个点连接的所有节点所组成的边中权值最小的边,同时这个查找过程,需要注意不能找已经连起来的节点,具体体现在代码实现上就是每找到节点就标记一下。 看过程图:
由 V 中全部 n 个顶点和 E 中 n-1 条边构成的无向连通子图被称为 G 的一棵生成树。边权和最小的生成树被称为无向图 G 的最小生成树(Minimum Spanning Tree,MST)。...二、定理&推论 1.任意一棵最小生成树一定包含无向图中权值最小的边。 证:反证法。假设无向图存在一棵不包含权值最小边的最小生成树。...若再从剩下的 m-k 条边中选 n-1-k 条添加到生成森林中,使其成为 G 的生成树,并且保证后选的边权值之和最小,则该生成树一定包含这 m-k 条边中连接生成森林的两个不连通节点的权值最小的边。...算法证明: 要证明Kruskal算法生成的是最小生成树,我们分两步来证明: (1)Kruskal算法一定能得到一个生成树; (2)该生成树具有最小代价。...又由于存在最小生成树的前提是图为连通图,故第二种情况也不存在。 (2)假设图有n个顶点,则生成树一定具有n-1条边。假设该图的最小生成树为M。先做出如下假设: 1)Kruskal得到的树为K。
虽然放在一起,但是他们两个除了都是树之外没有一点关系。 最短路径生成树,就是ROOT根节点到达任意点距离最短的路径所构成的树,就是最短路径生成树。我画两个图给大家理解。 ?...最短路径生成树 ? 最小生成树 ? 这时候大家会发现,最短路径生成树不就是求完最短路之后,路径所构成的树吗,其实就是这样的。但是这里要明白一点,最短路径生树不唯一。...我们举一个最简单的例子,如下图: ? 只选 2-3权值的边构成一颗最短路径生成树,之选2 5构成一颗最短路径生成树。...最短路径生树的详解:戳这里 最小生成树的详解:戳这里 生成树相关:戳这里
以上面那个无向图为例,我们来模拟一下最小生成树的构造过程: ? 这是笔者在纸上模拟的过程,到最后,生成的最小生成树的权值之和为 15 。...下面我们来看一下 Prim 算法的核心思想: 我们换个角度思考一下:既然最后我们需要的最小生成树一定要有 n 个顶点,那么我们直接向这个最小生成树加入图的顶点就行了。...每次向生成树中加入距生成树的距离最小并且还未被加入生成树的顶点,同时通过这个加入的点对其他还未加入生成树的点进行松弛,缩小其他顶点到生成树的距离,重复这个过程,直到 n 个顶点都加入了生成树中。...n 个时,执行循环 min = inf; // 循环找出未被加入最小生成树的并且距离最小生成树最小的顶点 for(int i = 0; i < n;...count++; /* * 更新最小生成树的总权值:最小生成树的总权值等于最小生成树原来的权值 * 加上刚刚加入最小生成树的顶点到最小生成树的距离
最小生成树 生成树(极小连通子图):含有图中全部n个顶点,但只有n-1条边。并且n-1条边不能构成回路。 [在这里插入图片描述] 生成森林:非连通图每个连通分量的生成树一起组成非连通图的生成森林。...[在这里插入图片描述] 求最小生成树 使用不同的遍历图的方法,可以得到不同的生成树 从不同的顶点出发,也可能得到不同的生成树。...按照生成树的定义,n 个顶点的连通网络的生成树有 n 个顶点、n-1 条边。...在网的多个生成树中,寻找一个各边权值之和最小的生成树 构造最小生成树的准则 必须只使用该网中的边来构造最小生成树; 必须使用且仅使用n-1条边来联结网络中的n个顶点 不能使用产生回路的边 --- 贪心算法...将该边作为最小生成树的边保存起来,并将该边顶点全部加入U集合中,并从W中删去这些顶点。 重新调整U中顶点到W中顶点的距离, 使之保持最小,再重复此过程,直到W为空集止。
这样形成的一颗简单的树其实就是能够串联所有结点的一条路径,而最小生成树的概念,其实就是对于有权图来说,权数最少的那条能够串连起所有结点的边的路径,或者也可以说是最小连通树、最小连通子图、最小代价树。...从上图中就可以看出,对于一个有权图来,可以有许多生成树的方式,不过不同的路线方式的结果会不同,只有最后一个路径形成的生成树具有路径最小的那颗树,就是我们需要的最小生成树。 为什么要强调是有权图呢?...最典型的应用就是地图上哪条线路成本最少呀,办公楼布线怎么走线最经济之类相关的题目,基本都会牵涉到最小生成树的概念。...相信通过具体的算法你对最小生成树的概念就更清晰了,不知道你会不会有个这样的想法:直接遍历所有的边,给他们按权值排序,这样我们再依次遍历这个排序后的边结构数组,然后将边的结点加入到最终要生成的树中,这样不也能形成一个最小生成树嘛...最小生成树是不是很好玩的东西,图的结构其实是很复杂的,不过越是复杂的东西能够玩出的花活也越多。
定义: 一个有 n 个结点的连通图的生成树是原图的极小连通子图,且包含原图中的所有 n 个结点,并且有保持图连通的最少的边。...[1] 最小生成树可以用kruskal(克鲁斯卡尔)算法或prim(普里姆)算法求出。...Kruskal算法简述: 假设 WN=(V,{E}) 是一个含有 n 个顶点的连通网,则按照克鲁斯卡尔算法构造最小生成树的过程为:先构造一个只含 n 个顶点,而边集为空的子图,若将该子图中各个顶点看成是各棵树上的根结点...之后,从网的边集 E 中选取一条权值最小的边,若该条边的两个顶点分属不同的树,则将其加入子图,也就是说,将这两个顶点分别所在的两棵树合成一棵树;反之,若该条边的两个顶点已落在同一棵树上,则不可取,而应该取下一条权值最小的边再试之...forest.add(item) edges = sorted(edges, key=lambda element: element[2]) num_sides = len(nodes)-1 # 最小生成树的边数等于顶点数减一
int map[MAXN][MAXN];//储存a->b之间的边权值 int pre[MAXN];//pre[i]记录i的父节点 int ans; void Prim() { int i,j...(找当前i点所对应的最短权值) if(!...if(k==0) return ;//如果没有点可以扩展,即图G不连通,返回 p[k]=true;//将点k移到Va集合 ans+=dist[k];//记录最小树的权值...for(j=1;j<=n;j++)//更新相邻k相邻的点(有些dist依旧记录着以前Va结点中相邻的点) { //对于每个与k相邻的Vb中的点j...,更新j距离最近的点及其距离 if(!
—————————————————————- PRIMER 总体思路:和Dijstrak差点儿相同,都是用了简单的贪心策略,每次挑选距离生成树距离近期的没被合并进来的点作为吸收对象。...仅仅是primer在松弛那一步上把距离的更新作为总体距离的更新而Dijstrak则是单原点的距离更新!!。 // primer.cpp : 定义控制台应用程序的入口点。...多了一步统计 for(int j=0;jdis[mark][j])//把dis[s][j]看成是总体到其它各点的距离...可是和上面的primer不同,kruskal主要针对边的权大小来选择吸收的点。 简单来讲能够分成下面3步: 【1】依据边的权值大小来排序。 【2】检測候选边的端点是否来自同一集合。 【3】合并点。...// kruskal.cpp : 定义控制台应用程序的入口点。
领取专属 10元无门槛券
手把手带您无忧上云