连通图:无向图G中,若从顶点i到顶点j有路径相连,则称i,j是连通的;如果G是有向图,那么连接i和j的路径中所有的边都必须同向;如果图中任意两点之间都是连通的,那么图被称作连通图。
若图中顶点数为n,则它的生成树含有n-1条边。对生成树而言,若砍去它的一条边,则会变成非连通图,若加上一条边则会形成一个回路。
图是由若干给定的顶点及连接两顶点的边所构成的图形,这种图形通常用来描述某些事物之间的某种特定关系。顶点用于代表事物,连接两顶点的边则用于表示两个事物间具有这种关系。
原文链接:http://tecdat.cn/?p=17835 本文在股市可视化中可视化相关矩阵 :最小生成树 在本文示例中,我将使用日数据和1分钟数据来可视化股票数据 。 我发现以下概念定义非常有用:
【视频】Copula算法原理和R语言股市收益率相依性可视化分析 R语言时间序列GARCH模型分析股市波动率 【视频】量化交易陷阱和R语言改进股票配对交易策略分析中国股市投资组合 使用R语言对S&P500股票指数进行ARIMA + GARCH交易策略 R语言量化交易RSI策略:使用支持向量机SVM R语言资产配置: 季度战术资产配置策略研究 R语言动量交易策略分析调整后的数据 TMA三均线股票期货高频交易策略的R语言实现 R语言时间序列:ARIMA / GARCH模型的交易策略在外汇市场预测应用 R语言基于Garch波动率预测的区制转移交易策略 r语言多均线股票价格量化策略回测 使用R语言对S&P500股票指数进行ARIMA + GARCH交易策略 Python基于粒子群优化的投资组合优化研究 R语言Fama-French三因子模型实际应用:优化投资组合 R语言动量和马科维茨Markowitz投资组合(Portfolio)模型实现 Python计算股票投资组合的风险价值(VaR) R语言Markowitz马克维茨投资组合理论分析和可视化 R语言中的广义线性模型(GLM)和广义相加模型(GAM):多元(平滑)回归分PYTHON用RNN神经网络LSTM优化EMD经验模态分解交易策略分析股票价格MACD R语言深度学习:用keras神经网络回归模型预测时间序列数据 【视频】CNN(卷积神经网络)模型以及R语言实现回归数据分析 Python TensorFlow循环神经网络RNN-LSTM神经网络预测股票市场价格时间序列和MSE评估准确性 数据分享|PYTHON用KERAS的LSTM神经网络进行时间序列预测天然气价格例子 Python对商店数据进行lstm和xgboost销售量时间序列建模预测分析 Matlab用深度学习长短期记忆(LSTM)神经网络对文本数据进行分类 RNN循环神经网络 、LSTM长短期记忆网络实现时间序列长期利率预测 结合新冠疫情COVID-19股票价格预测:ARIMA,KNN和神经网络时间序列分析 深度学习:Keras使用神经网络进行简单文本分类分析新闻组数据 用PyTorch机器学习神经网络分类预测银行客户流失模型 PYTHON用LSTM长短期记忆神经网络的参数优化方法预测时间序列洗发水销售数据 Python用Keras神经网络序列模型回归拟合预测、准确度检查和结果可视化 Python用LSTM长短期记忆神经网络对不稳定降雨量时间序列进行预测分析 R语言中的神经网络预测时间序列:多层感知器(MLP)和极限学习机(ELM)数据分析报告 R语言深度学习:用keras神经网络回归模型预测时间序列数据 Matlab用深度学习长短期记忆(LSTM)神经网络对文本数据进行分类 R语言KERAS深度学习CNN卷积神经网络分类识别手写数字图像数据(MNIST) MATLAB中用BP神经网络预测人体脂肪百分比数据 Python中用PyTorch机器学习神经网络分类预测银行客户流失模型 R语言实现CNN(卷积神经网络)模型进行回归数据分析 SAS使用鸢尾花(iris)数据集训练人工神经网络(ANN)模型 【视频】R语言实现CNN(卷积神经网络)模型进行回归数据分析 Python使用神经网络进行简单文本分类 R语言用神经网络改进Nelson-Siegel模型拟合收益率曲线分析 R语言基于递归神经网络RNN的温度时间序列预测 R语言神经网络模型预测车辆数量时间序列 R语言中的BP神经网络模型分析学生成绩 matlab使用长短期记忆(LSTM)神经网络对序列数据进行分类 R语言实现拟合神经网络预测和结果可视化 用R语言实现神经网络预测股票实例 使用PYTHON中KERAS的LSTM递归神经网络进行时间序列预测 python用于NLP的seq2seq模型实例:用Keras实现神经网络机器翻译 用于NLP的Python:使用Keras的多标签文本LSTM神经网络分类
图结构是数据元素呈多对多关系,就是任意两个元素存在这样的关系。如果用一个公式来表示就是由顶点集合和顶点之间的关系集合组成的一种数据结构。
1、在对无向图进行遍历时,对于连通图,仅需从图中任一顶点出发,进行深度优先搜索或广度优先搜索,便可访问到图中所有顶点。
一个连通图的生成树指的是,极小的连通子图,它含有图中的全部n个顶点,但是只足以构成一棵树的(n-1)条边。
回到正题,首先介绍下什么是图的边连通度和点连通度。一般来说,点连通度是指对应一个图G,对于所有点集U属于V(G),也就是V(G)的子集中,使得G-U要么是一个非连通图,要么就是一个平凡图(即仅包含一个独立点的图),其中最小的集合U的大小就是图G的点连通度,有时候也直接称为图的连通度。通俗点说,就是一个图G最少要去掉多少个点会变成非连通图或者平凡图。当然对于一个完全图来说Kn来说,它的连通度就是n-1。 同理,边连通度就是对于一个非平凡图G,至少去掉多少条边才能使得该图变成非连通图。我们的问题就是,对于任意一个图,如何求该图的连通度以及边连通度?这跟最大流问题有什么联系? 简单起见,我们先说如何求一个图的边连通度lamda(G)。(基于无向图考虑) 对于图G,设u,v是图G上的两个顶点,定义r(u,v)为删除最少的边,使得u到v之间没有通路。将图G转换成一个流网络H,u为源点,v是汇点,边容量均为1,那么显然r(u,v)就是流网络的最小割,根据(二)里的介绍,其等于流网络的最大流。 但是,目前为止我们还没解决完问题,因为显然我们要求的边连通度lamda(G)是所有的点对<u,v>对应的r(u,v)中最小的那个值。这样的话我们就必须遍历所有的点对,遍历的的复杂度为O(n*n)。这显然代价太高,而事实上,我们也不必遍历所有点对。
给定一个带权的无向连通图,能够连通该图的全部顶点且不产生回路的子图即为该图的生成树;
无论是有向图还是无向图,主要的存储方式都有两种:邻接矩阵和邻接表。前者图的数据顺序存储结构,后者属于图的链接存储结构。
在无向图中,如果任意两个顶点之间都存在边,则称该图为无向完全图。含有n个顶点的无向图有n(n-1)/2条边。
此算法可以称为“加边法”,初始最小生成树边数为0,每迭代一次就选择一条满足条件的最小代价边,加入到最小生成树的边集合里。
在之前的文章中已经详细介绍了图的一些基础操作。而在实际生活中的许多问题都是通过转化为图的这类数据结构来求解的,这就涉及到了许多图的算法研究。
连通图:在无向图G中,若对任何两个顶点 v、u 都存在从v 到 u 的路径,则称G是连通图。
随着学习的深入,我们的知识也在不断的扩展丰富。树结构有没有让大家蒙圈呢?相信我,学完图以后你就会觉得二叉树简直是简单得没法说了。其实我们说所的树,也是图的一种特殊形式。
大清都亡了,我们村还没有通网。为了响应国家的新农村建设的号召,村里也开始了网络工程的建设。 穷乡僻壤,人烟稀少,如何布局网线,成了当下村委会首个急需攻克的难题。 如下图,农户之间的距离随机,建设网线的成本与距离成正比,怎样才能用最少的成本将整个村的农户网络连通呢?
1. 图这种数据结构相信大家都不陌生,实际上图就是另一种多叉树,每一个结点都可以向外延伸许多个分支去连接其他的多个结点,而在计算机中表示图其实很简单,只需要存储图的各个结点和结点之间的联系即可表示一个图,顶点可以采取数组vector存储,那顶点和顶点之间的关系该如何存储呢?其实有两种方式可以存储顶点与顶点之间的关系,一种就是利用二维矩阵(二维数组),某一个点和其他另外所有点的连接关系和权值都可以通过二维矩阵来存储,另一种就是邻接表,类似于哈希表的存储方式,数组中存储每一个顶点,每个顶点下面挂着一个个的结点,也就是一个链表,链表中存储着与该结点直接相连的所有其他顶点,这样的方式也可以存储结点间的关系。
版权声明:本文为博主原创文章,转载请注明博客地址: https://blog.csdn.net/zy010101/article/details/73613760
有向图和无向图的表示法有略微的区别,注意看 G1有箭头,有向图,表示方法是 V={V~0~,V~1~,V~2~,V~3~} E = {<V~0~,V~1~>,<V~1~,V~2~>,<V~1~,V~0~>,<V~2~,V~0~>,<V~2~,V~3~>} G2无箭头,无向图,表示方法是 V={V~0~,V~1~,V~2~,V~3~} E = {(V~0~,V~1~),(V~1~,V~2~),(V~0~,V~2~),(V~2~,V~3~)}
一个连通的生成树是图中的极小连通子图,它包括图中的所有顶点,并且只含尽可能少的边。这意味着对于生成树来说,若砍去它的一条边,就会使生成树变成非连通图;若给它添加一条边,就会形成图中的一条回路。
4.有向连通图D含有欧拉通路,当且仅当该图为连通图且D中除两个结点外,其余每个结点的入度=出度,且此两点满足deg-(u)-deg+(v)=±1。(起始点s的入度=出度-1,结束点t的出度=入度-1 或两个点的入度=出度);
1.无向连通图 G 是欧拉图,当且仅当 G 不含奇数度结点( G 的所有结点度数为偶数); 2.无向连通图G 含有欧拉通路,当且仅当 G 有零个或两个奇数度的结点; 3.有向连通图 D 是欧拉图,当且仅当该图为连通图且 D 中每个结点的入度=出度; 4.有向连通图 D 含有欧拉通路,当且仅当该图为连通图且 D 中除两个结点外,其余每个结点的入度=出度,且此两点满足 deg-(u)-deg+(v)=±1 。(起始点s的入度=出度-1,结束点t的出度=入度-1 或两个点的入度=出度); 5.一个非平凡连通图是欧拉图当且仅当它的每条边属于奇数个环; 6.如果图G是欧拉图且 H = G-uv,则 H 有奇数个 u,v-迹仅在最后访问 v ;同时,在这一序列的 u,v-迹中,不是路径的迹的条数是偶数。 弗勒里算法 弗勒里(B.H.Fleury) 在1883 年给出了在欧拉图中找出一个欧拉环游的多项式时间算法,称为弗勒里算法(Fleury’salgorithm)。这个算法具体表述如下: 输入:一个连通偶图 G 和 G 中任意一个指定项点 u 输出:从 u 出发的 G 的一个欧拉环游 1、令 W:=u,x:=u,F:=G 2、while 3、选一条 中的边 e,其中 e 不是 F 的一条割边;如果 中的边都是割边,那么任选一条边 e 4、用 替换 ,用 y 替换 x ,用 替换 F 5、end while 6、返回 W 其算法核心就是沿着一条迹往下寻找,先选择非割边,除非这个点的邻边都是割边。这样得到一条新的迹,然后再继续往下寻找,直到把所有边找完。遵循这样一个原则就可以找出图的一个欧拉环游来。 在有向图中也可以类似地定义有向环游、有向欧拉环游、有向欧拉图和有向欧拉迹的概念。 类似地,有如下定理:一个有向图是有向欧拉图当且仅当这个图中每个顶点的出度和入度相等。 [1]
最近双11又快到了 有女朋友的忙着帮女朋友清空购物车 有男朋友的忙着叫男朋友帮清购物车 而小编就比较牛逼了 小编沉迷学习,已经无法自拔。 那么今天小编又给大家带来什么好玩的东西呢? 没错 那就是小编通过 夜夜修仙,日日操劳 终于修成的正果 用起来很牛逼,说出去很装逼的 最小生成树 纲要 - 什么是图(network) - 什么是最小生成树 (minimum spanning tree) - 最小生成树的算法 1 什么是图 这里的图当然不是我们日常说的图片或者地图。通常情况下,我们把图看成是一种由“顶点(no
图的“多对多”特性使得图在结构设计和算法实现上较为困难,这时就需要根据具体应用将图转换为不同的树来简化问题的求解。
满足欧拉回路的一个大前提是判断当前图是一个连通图。问题又随之而来,什么是连通图?如何才能判断一个图到底是不是连通图?带着这个问题来看后面的内容。
在有向图G中,如果两点互相可达,则称这两个点强连通,如果G中任意两点互相可达,则称G是强连通图。
一(基本概念) 1.图的定义:图是由顶点的有穷非空集合和顶点之间边的集合组成,通常表示为:G(V,E),其中,G表示一个图,V是图G中顶点的集合,E是图G中边的集合。 2.与线性表、树的比较: (1)线性表中我们把数据元素叫元素,树中将数据元素叫结点,在图中数据元素,我们则称之为顶点。 (2)线性表中可以没有数据元素,称为空表。树中可以没有结点,叫做空树。在图结构中,不允许没有顶点。 (3)线性表中,相邻的数据元素之间具有线性关系,树结构中,相邻两层的结点具有层次关系,而图中,任意两个顶点之间都可能有关系
事在人为,盛衰之理,虽曰天命,岂非人事哉!原庄宗之所以得天下,与其所以失之者,可以知之矣。------------《伶官传序》
这里的图当然不是我们日常说的图片或者地图。通常情况下,我们把图看成是一种由“顶点”和“边”组成的抽象网络。在各个“顶点“间可以由”边“连接起来,使两个顶点间相互关联起来。图的结构可以描述多种复杂的数据对象,应用较为广泛,看下图:
含有n个顶点的无向完全图有多少条边? n×(n-1)/2条边 含有n个顶点的有向完全图有多少条弧? n×(n-1)条边
顶点和边:图中结点称为顶点,第 i 个顶点记作 vi。两个顶点 vi 和 vj 相关联称作顶点 vi 和顶点 vj 之间有一条边,图中的第 k 条边记作 ek,ek = (vi,vj) 或 <vi,vj>。
一个连通图可能有多棵生成树,而最小生成树是一副连通加权无向图中一颗权值最小的生成树,它可以根据Prim算法和Kruskal算法得出,这两个算法分别从点和边的角度来解决。
1.图 图G由顶点集V和关系集E组成,记为:G=(V,E),V是顶点(元素)的有穷非空集,E是两个顶点之间的关系的集合。 若图G任意两顶点a,b之间的关系为有序对,∈E, 则称为从a到b的一条弧/有向边;其中: a是的弧尾,b是的弧头;称该图G是有向图。 若图G的任意两顶点a,b之间的关系为无序对(a,b), 则称(a,b)为无向边(边),称该图G是无向图。 无向图可简称为图。 2.完全图 3.网:带权的图 4.子图:对图 G=(V,E)和G’=(V’,E’), 若V’
图论是研究图的数学理论和方法,其中图是由顶点集合及连接这些顶点的边集合组成的数学结构。图论在计算机科学、网络规划、生物信息学等众多领域都有重要应用。最小生成树(Minimum Spanning Tree,MST)是图论中一个经典问题,指在一个加权连通图中寻找一棵权值最小的生成树。克鲁斯卡尔(Kruskal)算法和普利姆(Prim)算法是解决最小生成树问题的两种著名算法。
我们在图的定义中说过,带有权值的图就是网结构。一个连通图的生成树是一个极小的连通子图,它含有图中全部的顶点,但只有足以构成一棵树的n-1条边。所谓的最小成本,就是n个顶点,用n-1条边把一个连通图连接起来,并且使得权值的和最小。综合以上两个概念,我们可以得出:构造连通网的最小代价生成树,即最小生成树(Minimum Cost Spanning Tree)。 找连通图的最小生成树,经典的有两种算法,普里姆算法和克鲁斯卡尔算法,这里介绍普里姆算法。 为了能够讲明白这个算法,我们先构造网图的邻接矩阵,如图7-6
图的表示:G=(V,E), V=(v|v为图中的顶点), E=(e|e为图中的边)
这一篇博客继续以一些OJ上的题目为载体,对图的连通性专题进行整理一下。会陆续的更新。。。
该文章是一篇技术文章,主要介绍了如何通过编辑距离算法实现文本相似度的计算。文章首先介绍了编辑距离算法的原理,然后详细讲解了基于编辑距离的文本相似度计算方法,并给出了具体的实现代码。最后,文章还探讨了编辑距离算法在技术社区中的应用,包括相似度计算和相似问答系统。
图是一种非线性数据结构,它由节点(也称为顶点)和连接这些节点的边组成。图可以用来表示各种关系和连接,比如网络拓扑、社交网络、地图等等。图的节点可以包含任意类型的数据,而边则表示节点之间的关系。图有两种常见的表示方法:邻接矩阵和邻接表。
连通图中的每一棵生成树,都是原图的一个极大无环子图,即:从其中删去任何一条边,生成树就不在连通;反之,在其中引入任何一条新边,都会形成一条回路。
前面已经讲了 "一对一" 的线性存储结构、"一对多"的树结构 , 现在介绍 "多对多" 的图结构
基本概念 图(Graph):图(Graph)是一种比线性表和树更为复杂的数据结构。 图结构:是研究数据元素之间的多对多的关系。在这种结构中,任意两个元素之间可能存在关系。即结点之间的关系可以是任意的,图中任意元素之间都可能相关。 图G由两个集合V(顶点Vertex)和E(边Edge)组成,定义为G=(V,E) 线性结构:是研究数据元素之间的一对一关系。在这种结构中,除第一个和最后一个元素外,任何一个元素都有唯一的一个直接前驱和直接后继。 树结构:是研究数据元素之间的一对多的关系。在这种结构中
在上一篇博客判断有向图是否有圈中从递归的角度简单感性的介绍了如何修改深度优先搜索来判断一个有向图是否有圈。事实上, 它的实质是利用了深度优先生成树(depth-first spanning tree)的性质。那么什么是深度优先生成树?顾名思义,这颗树由深度优先搜索而生成的,由于无向图与有向图的深度优先生成树有差别,下面将分别介绍。 一. 无向图的深度优先生成树 无向图的深度优先生成树的生成步骤: 深度优先搜索第一个被访问的顶点为该树的根结点。 对于顶点v,其相邻的边w如果未被访问,则边(v, w)为该树的树
在一给定的无向图 G = ( V , E ) G = (V, E) G=(V,E) 中, ( u , v ) (u, v) (u,v)代表连接顶点 u u u 与顶点 v v v 的边,而 w ( u , v ) w(u, v) w(u,v) 代表此边的权重,若存在 T T T 为 E E E 的子集且为无循环图,使得 w ( T ) w(T) w(T) 最小,则此 T T T 为 G G G 的最小生成树,因为 T T T是由图 G G G产生的。
2021-04-20:手写代码:最小生成树算法之Prim。 福大大 答案2021-04-20: 解锁点,解锁边,解锁点,解锁边,一直解锁下去。 代码用golang编写。代码如下: package main import ( "fmt" "math" ) func main() { graph := [][]int{ {0, 11, 55}, {math.MaxInt32, 0, 22}, {math.MaxInt32, math.M
普里姆算法(Prim算法),图论中的一种算法,可在加权连通图里搜索最小生成树。意即由此算法搜索到的边子集所构成的树中,不但包括了连通图里的所有顶点(英语:Vertex (graph theory)),且其所有边的权值之和亦为最小。该算法于1930年由捷克数学家沃伊捷赫·亚尔尼克(英语:Vojtěch Jarník)发现;并在1957年由美国计算机科学家罗伯特·普里姆(英语:Robert C. Prim)独立发现;1959年,艾兹格·迪科斯彻再次发现了该算法。因此,在某些场合,普里姆算法又被称为DJP算法、亚
图是非线性数据结构,是一种较线性结构和树结构更为复杂的数据结构,在图结构中数据元素之间的关系可以是任意的,图中任意两个数据元素之间都可能相关。
领取专属 10元无门槛券
手把手带您无忧上云