之前小白为各位小伙伴带来了SIFT特征点中的图像金字塔和特征点的位置与方向。本次小白为各位小伙伴们带来SIFT的最后一讲——特征点描述符。
https://github.com/AndroidDeveloperLB/AndroidJniBitmapOperations
寄语:本文梳理了最近邻插值法、双线性插值法和三次样条插值法的原理,并以图像缩放为例,对原理进行了C++及Python实现。
计算机视觉中的特征点提取算法比较多,但SIFT除了计算比较耗时以外,其他方面的优点让其成为特征点提取算法中的一颗璀璨的明珠。SIFT算法的介绍网上有很多比较好的博客和文章,我在学习这个算法的过程中也参看网上好些资料,即使评价比较高的文章,作者在文章中对有些比较重要的细节、公式来历没有提及,可能写博客的人自己明白,也觉得简单,因此就忽略了这些问题,但是对刚入门的人来说,看这些东西,想搞清楚这些是怎么来的还是比较费时费力的。比如SIFT算法中一个重要的操作:求取描述子的主方向。好多文章只是一提而过或忽略,然后直接给出一个公式,SIFT算法的原作者也提使用抛物线插值,但是具体怎么插的就不太详尽了,对于初学者来说更是不知所云。因此本文打算在参看的文章上对有关这些细节给出一些比较详细的说明,还有本文尽量对操作过程配备对应图片或示意图说明,同时附上robwhesss开源SIFT C代码对应程序块并给予注解,方便理解。
上一篇推送中,为大家介绍了几种图像处理算法总结的方法,在本次推送中,二白继续为大家介绍余下的方法。
比较常用的插值算法有这么几种:最邻近插值,双线性二次插值,三次插值,Lanczos插值等等
本文介绍在ArcMap软件中,实现栅格图像重采样的具体操作,以及不同重采样方法的选择依据。
在图像几何变换的过程中,常用的插值方法有最邻近插值(近邻取样法)、双线性内插值和三次卷积法。
1、ipython是一个python的交互式shell,比默认的python shell好用得多,支持变量自动补全,自动缩进,支持bash shell命令,内置了许多很有用的功能和函数。在ubuntu下只要sudo apt-get install ipython 就装好了,通过ipython启动。 2、iris.csv数据集以鸢尾花的特征作为数据来源,数据集包含150个数据集,分为3类[山鸢尾(Iris setosa)、变色鸢尾(Iris versicolor)和维吉尼亚鸢尾(Iris virginica)
MATLAB中的插值函数为interp1,其调用格式为: yi= interp1(x,y,xi,'method')
1、MATLAB中图象数据的读取 A、 imread imread函数用于读入各种图象文件,其一般的用法为 [X,MAP]=imread(‘filename’,‘fmt’) 其中,X,MAP分别为读出的图象数据和颜色表数据,fmt为图象的格式,filename为读取的图象文件(可
主要可以分为两类,一类是线性图像插值方法,另一类是非线性图像插值方法,如上图所示。
https://blog.csdn.net/chentianting/article/details/88869872
插值就是在已知数据之间计算估计值的过程,是一种实用的数值方法,是函数逼近的重要方法。在信号处理和图形分析中,插值运算的应用较为广泛,MATLAB提供了多种插值函数,可以满足不同的需求。
拟合:已知有限个数据点,求近似函数,可不过已知数据点,只要求在某种意义下它在这些点上的总偏差最小。
dst - 目标图像。当参数dsize不为0时,dst的大小为size;否则,它的大小需要根据src的大小,参数fx和fy决定。dst的类型(type)和src图像相同
命令1 interp1 功能 一维数据插值(表格查找)。该命令对数据点之间计算内插值。它找出一元函数f(x)在中间点的数值。其中函数f(x)由所给数据决定。 x:原始数据点 Y:原始数据点 xi:插值点 Yi:插值点 格式 (1)yi = interp1(x,Y,xi) 返回插值向量yi,每一元素对应于参量xi,同时由向量x 与Y 的内插值决定。参量x 指定数据Y 的点。 若Y 为一矩阵,则按Y 的每列计算。yi 是阶数为length(xi)*size(Y,2)的输出矩阵。 (2)yi = interp1(Y,xi) 假定x=1:N,其中N 为向量Y 的长度,或者为矩阵Y 的行数。 (3)yi = interp1(x,Y,xi,method) 用指定的算法计算插值: ’nearest’:最近邻点插值,直接完成计算; ’linear’:线性插值(缺省方式),直接完成计算; ’spline’:三次样条函数插值。对于该方法,命令interp1 调用函数spline、ppval、mkpp、umkpp。这些命令生成一系列用于分段多项式操作的函数。命令spline 用它们执行三次样条函数插值; ’pchip’:分段三次Hermite 插值。对于该方法,命令interp1 调用函数pchip,用于对向量x 与y 执行分段三次内插值。该方法保留单调性与数据的外形; ’cubic’:与’pchip’操作相同; ’v5cubic’:在MATLAB 5.0 中的三次插值。 对于超出x 范围的xi 的分量,使用方法’nearest’、’linear’、’v5cubic’的插值算法,相应地将返回NaN。对其他的方法,interp1 将对超出的分量执行外插值算法。 (4)yi = interp1(x,Y,xi,method,’extrap’) 对于超出x 范围的xi 中的分量将执行特殊的外插值法extrap。 (5)yi = interp1(x,Y,xi,method,extrapval) 确定超出x 范围的xi 中的分量的外插值extrapval,其值通常取NaN 或0。 例1
插值法又称“内插法”,是利用函数f (x)在某区间中已知的若干点的函数值,作出适当的特定函数,在区间的其他点上用这特定函数的值作为函数f (x)的近似值,这种方法称为插值法。如果这特定函数是多项式,就称它为插值多项式。
主要还是考虑面试的时候会不会用到,刚才好好看了下旋转的这个思路,其实和图像缩放的思路差不多的,主要的问题是要找到坐标的映射方式。 因为还是包含了一部分的公式,所以我再word里写好然后截图上来吧。
补充知识:最邻近插值法(The nearest interpolation)实现图像缩放
在图像处理中,双线性插值算法的使用频率相当高,比如在图像的缩放中,在所有的扭曲算法中,都可以利用该算法改进处理的视觉效果。首先,我们看看该算法的简介。
这篇文章基于自己为OneFlow框架开发interpolate这个Op总结而来,OneFlow的interpolate Op 和 Pytorch的功能一致,都是用来实现插值上采样或者下采样的。在实现这个Op的时候还给Pytorch修复了一个bug并合并到了主仓库,见:https://github.com/pytorch/pytorch/commit/6ab3a210983b7eee417e7cd92a8ad2677065e470。因此OneFlow框架中的interpolate算子和Pytorch中的interpolate算子的功能是完全等价的。这篇文章就以OneFlow中这个算子的实现为例来盘点一下深度学习框架中的那些插值算法。
超分辨率技术(Super Resolution),是通过硬件或软件的方法提高图像或视频帧的分辨率, 通过一系列低分辨率图像获取到高分辨率图像的过程。
图像几何变换又称为图像空间变换,它将一副图像中的坐标位置映射到另一幅图像中的新坐标位置。我们学习几何变换就是确定这种空间映射关系,以及映射过程中的变化参数。图像的几何变换改变了像素的空间位置,建立一种原图像像素与变换后图像像素之间的映射关系,通过这种映射关系能够实现下面两种计算:
看了好几篇关于双线性插值算法的博文,解释得都不好理解,不过下面这篇博文就解释得很好,以下内容均参考这篇:
视频行业常见的分辨率有 QCIF(176x144)、CIF(352x288)、D1(704x576 或 720x576),还有 360P(640x360)、720P(1280x720)、1080P(1920x1080)、4K(3840x2160)、8K(7680x4320)等。
在进行数据竞赛中,数据预处理阶段经常需要对数据进行缺失值处理。关于缺失值的处理并没有想象中的那么简单。以下为一些经验分享,基本涵盖了大部分处理方式。
电子设计自动化(electronic design automation, EDA)是指利用计算机辅助设计(CAD)软件,来完成超大规模集成电路(VLSI)芯片的功能设计、综合、验证、物理设计(包括布局、布线、版图、设计规则检查等)等流程的设计方式。机器学习技术在 EDA 领域的应用可以追溯至上世纪 90 年代,而 ML 技术的近期突破性发展和 EDA 任务不断增加的复杂度使得研究者对利用 ML 解决 EDA 任务产生了愈发浓厚的兴趣。
当我们使用OpenCV库的cv2.resize()函数对图像进行缩放操作时,有时候可能会遇到以下错误:cv2.error: C:\projects\opencv-python\opencv\modules\imgproc\src\resize.cpp:4044: error: (-215) s。这个错误通常是由于函数参数设置不正确引起的。本篇博客将介绍如何解决这个错误。
在上章3.QOpenGLWidget-通过着色器来渲染渐变三角形,我们为每个顶点添加颜色来增加图形的细节,从而创建出有趣的图像。但是,如果想让图形看起来更真实,我们就必须有足够多的顶点,从而指定足够多的颜色。这将会产生很多额外开销。
(1) Nearest方法速度最快,占用内存最小,但一般来说误差最大,插值结果最不光滑。
上个月底,微软研究院推出一套基于AI 技术的视频人脸模糊解决方案,通俗讲就是为人脸自动打码。而在今日,谷歌发布了模糊图片转高清图片的解决方案,说白了就是去除马赛克的技术。 你说谷歌,人家微软刚整出一套自动打码手艺,你就来个自动解码绝活。不少人有个疑问,那么谷歌是否能解除微软打的马赛克,上演一番科技版“用我的矛戳你的洞”?我们先来看下双方的技术原理是怎么样。 一、微软自动打码手艺 根据微软亚洲研究院副研究员谢文轩介绍,操作这套解决方案,用户只需在后台用鼠标选择想要打码的人物,相应人物在视频中的所有露脸区域
近年来,随着深度学习的不断发展,视觉领域出现了越来越多的高精度模型,但这些模型所需的计算量也越来越大。因此,如何在推理阶段避免冗余的计算在近年来成为研究热点。
OpenCV提供了warpAffine函数实现图片仿射变换功能,我们可以利用这个函数实现图像旋转,函数原型为:
十七、拟合(回归)与内插 17.1 polyfit() 假设当前有一组身高数据,与其对应的有一组体重数据,我们要分析两者之间是否有某种关联,这时就需要用到曲线拟合函数polyfit,其调用格式
在做数字图像处理时,经常会碰到小数象素坐标的取值问题,这时就需要依据邻近象素的值来对该坐标进行插值。比如:做地图投影转换,对目标图像的一个象素进行坐标变换到源图像上对应的点时,变换出来的对应的坐标是一个小数,再比如做图像的几何校正,也会碰到同样的问题。以下是对常用的三种数字图像插值方法进行介绍。 1、最邻近元法 这是最简单的一种插值方法,不需要计算,在待求象素的四邻象素中,将距离待求象素最近的邻象素灰度赋给待求象素。设i+u, j+v(i, j为正整数, u, v为大于零小于1的小数,下同)为待求象素坐
ARGB颜色模型:最常见的颜色模型,设备相关,四种通道,取值均为[0,255],即转化成二进制位0000 0000 ~ 1111 1111。
大家好,又见面了,我是你们的朋友全栈君。 1、原理 在图像的仿射变换中,很多地方需要用到插值运算,常见的插值运算包括最邻近插值,双线性插值,双三次插值,兰索思插值等方法,OpenCV提供了很多方法,其中,双线性插值由于折中的插值效果和运算速度,运用比较广泛。 越是简单的模型越适合用来举例子,我们就举个简单的图像:33 的256级灰度图。假如图像的象素矩阵如下图所示(这个原始图把它叫做源图,Source): 234 38 22 67 44 12 89 65 63 这 个矩阵中,元素坐标
论文及代码地址:Learning a Deep Convolutional Network for Image Super-Resolution)
figure yi_nearest=interp1(t,p,x,'nearest');%最邻近插值法 plot(t,p,'ko'); hold on plot(x,yi_nearest,'g','LineWidth',1.5);grid on; title('Nearest Method');
相机是机器视觉系统的核心部件,广泛应用于各个领域,如生产监控、测量任务和质量控制等。工业相机通常比常规的标准数字相机更加坚固耐用,这是因为它们必须能够应对各种复杂多变的外部影响,如应用于高温、高湿、粉尘等恶劣环境。工业相机的种类有很多,下图是常见的一些分类方式。下文将详细介绍几种常用类型的工业相机。
ZI = griddata(x,y,z,XI,YI) %x、y、z——数据,XI,YI——X-Y平面上的zhi网格数据
dst:输出,改变大小之后的图像,这个图像和原图像具有相同的内容,只是大小和原图像不一样而已;
void resize(InputArray src, OutputArray dst, Size dsize, double fx = 0, double fy = 0, int interpolaiton == INTER_LINEAR);
第一个被广泛接受的视频压缩标准MPEG-2于1996年被采纳,随后数字卫星电视得到了快速发展。下一个标准是MPEG-4 part 10(H.264/AVC),它提供了两倍的视频数据压缩率。它于2003年被采纳,导致了DVB-T/ C systems、互联网电视的发展以及各种视频共享和视频通信服务的出现。从2010年到2013年,联合视频编码联合协作小组(JCT-VC)积极致力于创建下一个视频压缩标准,开发者称之为高效视频编码(HEVC);它实现了数字视频数据压缩率的两倍增长。这一标准于2013年获得批准。同年,由谷歌开发的VP9标准被采纳,据称在视频数据压缩率上不逊于HEVC。
專 欄 ❈PytLab,Python 中文社区专栏作者。主要从事科学计算与高性能计算领域的应用,主要语言为Python,C,C++。熟悉数值算法(最优化方法,蒙特卡洛算法等)与并行化 算法(MPI,OpenMP等多线程以及多进程并行化)以及python优化方法,经常使用C++给python写扩展。 blog:http://ipytlab.com github:https://github.com/PytLab ❈ 前言 最近在写文章需要绘制一些一维的能量曲线(energy profile)和抽象的二维和
领取专属 10元无门槛券
手把手带您无忧上云