首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    CMU邢波教授:基于双向语言模型的生物医学命名实体识别,无标签数据提升NER效果

    【导读】生物医学文本挖掘领域近年来受到越来越多的关注,这得益于,科学文章,报告,医疗记录的电子化,使医疗数据更容易得到。这些生物医学数据包含许多生物和医学实体,如化学成分,基因,蛋白质,药物,疾病,症状等。在文本集合中准确识别这些实体是生物医学文本挖掘领域信息抽取系统的一个非常重要的任务,因为它有助于将文本中的非结构化信息转换为结构化数据。搜索引擎可以使用这种识别的实体来索引,组织和链接医学文档,这可以改善医疗信息检索效率。 实体的标识也可以用于数据挖掘和从医学研究文献中提取。例如,可以提取存储在关系数据库

    07
    领券