后来才发现,原来不是 Python 数据处理厉害,而是他有数据分析神器—— pandas 前言 本系列介绍了许多类比 Excel 的 pandas 操作,确实他们都能很好对应起来,这是因为 pandas...(AveragePrice)和销量(Total Volume) 希望看到不同年份总销量前10的地区,以及各个品种的销量信息 由于需求需要汇总,Excel 中使用透视表是最好的方式: 过程不多说,这里值得注意的是...,我们能通过最上方选择不同的年份,下方数据表能马上显示此年份总销量 top 10 的地区数据 用 Python 能快速简单做出这种效果吗?...,想看不同年份或不同 Top N 的结果,都需要修改代码。...我们稍微加工一下这个过程,定义一个函数: 现在好一些,但是改变条件仍然需要修改代码 简单加上一个装饰器即可: 行1:@wg.interact 是一个装饰器,打到我们的自定义函数上 其中每个命名参数为自定义函数上的参数
所以,不需要太多精力,让我们马上开始Python科学计算系列的第三帖——Pandas。如果你还没有查看其他帖子,不要忘了去看一下哦! 导入Pandas 我们首先要导入我们的演出明星——Pandas。...一个dataframe是一个二维的表结构。Pandas的dataframe可以存储许多种不同的数据类型,并且每一个坐标轴都有自己的标签。你可以把它想象成一个series的字典项。...所以,如果我们取出了某一列,我们获得的自然是一个series。 还记得我所说的命名列标签的注意事项吗?不使用空格和横线等可以让我们以访问类属性相同的方法来访问列,即使用点运算符。 ?...这里,loc和iloc一样会返回你所索引的行数据的一个series。唯一的不同是此时你使用的是字符串标签进行引用,而不是数字标签。 ix是另一个常用的引用一行的方法。...对数据集应用函数 有时候你会想以某些方式改变或是操作你数据集中的数据。例如,如果你有一列年份的数据而你希望创建一个新的列显示这些年份所对应的年代。
也可以用这两条来看: #1.1查看每一列的数据类型 DataDF.dtypes #1.2有多少行,多少列 DataDF.shape # 2.检查缺失数据 # 如果你要检查每列缺失数据的数量,使用下列代码是最快的方法...⚠️ format 是你[原始数据]中日期的格式 %y 两位数的年份表示(00-99) %Y 四位数的年份表示(000-9999) %m 月份(01-12) %d 月内中的一天(0-31) %H 24...一般来说价格不能为负,所以从逻辑上来说如果价格是小于0的数据应该予以筛出 #删除异常值:通过条件判断筛选出数据 #查询条件 querySer=DataDF.loc[:,'Quantity']>0 #应用查询条件...缺失值有3种: 1)Python内置的None值 2)在pandas中,将缺失值表示为NA,表示不可用not available。...后面出来数据,如果遇到错误:说什么float错误,那就是有缺失值,需要处理掉 所以,缺失值有3种:None,NA,NaN 那None和NaN有什么区别呢: None是Python的一种数据类型, NaN
标签:Python与Excel,pandas 在Excel中,可以通过功能区或者快捷菜单中的命令或快捷键插入列,对于Python来说,插入列也很容易。...我们已经探讨了如何将行插入到数据框架中,并且我们必须为此创建一个定制的解决方案。将列插入数据框架要容易得多,因为pandas提供了一个内置的解决方案。我们将看到一些将列插入到数据框架的不同方法。....insert()方法 最快的方法是使用pandas提供的.insert()方法。...例如,df[['列1','列2','列3']]将为我们提供一个包含三列的数据框架,即“列1”、“列2”和“列3”。最好的情况是,列顺序与你键入这些名称的顺序完全相同。...图4 使用.reindex()改变列顺序 这基本上是相同的思想——对列名重新排序,此方法与前一种方法的唯一区别在于语法。
对于某些任务,使用 Python 的优点是显而易见的。以更快的速度处理更大的数据集。使用基于 Python 构建的开源机器学习库。你可以轻松导入和导出不同格式的数据。...使用相同的逻辑,我们可以计算各种的值 -- 完整列表位于左侧菜单栏下的计算/描述性统计部分的 Pandas 文档。...这应该让你了解 Python 中数据可视化的强大功能。如果你感到不知所措,你可以使用一些解决方案,如Plot.ly,这可能更直观地掌握。...Pandas 和 Python 共享了许多从 SQL 和 Excel 被移植的相同方法。可以在数据集中对数据进行分组,并将不同的数据集连接在一起。你可以看看这里的文档。...现在我们完成了,我们可以快速看看,添加了几个可以操作的列,包括不同年份的数据来源。 现在我们来合并数据: ? 我们现在可以看到,这个表格包含了人均 GDP 列和具有不同列的遍及全国的数据。
你可以将上面的代码复制粘贴到你自己的 Anaconda 中,如果你用一些 Python 代码运行,可以迭代它! 下面是代码的输出,如果你不修改它,就是所谓的字典。 ?...使用相同的逻辑,我们可以计算各种的值 — 完整列表位于左侧菜单栏下的计算/描述性统计部分的 Pandas 文档。...这应该让你了解 Python 中数据可视化的强大功能。如果你感到不知所措,你可以使用一些解决方案,如Plot.ly,这可能更直观地掌握。...Pandas 和 Python 共享了许多从 SQL 和 Excel 被移植的相同方法。可以在数据集中对数据进行分组,并将不同的数据集连接在一起。你可以看看这里的文档。...现在我们完成了,我们可以快速看看,添加了几个可以操作的列,包括不同年份的数据来源。 现在我们来合并数据: ? 我们现在可以看到,这个表格包含了人均 GDP 列和具有不同列的遍及全国的数据。
Pandas简介 Pandas也是Python数据分析和实战的必备工具包之一,它提供了快速灵活的数据结构,简单的直观的处理关系型数据。可以方便的处理像Excel或者数据库中这样的结构化的数据。...Pandas是基于NumPy开发,并且是开源的分析工具。从0.25.x系列版本开始,Pandas仅支持Python 3.5.3及更高版本。...未来的版本中将提高到3.6,在不管什么时候开始学习,可以选择使用最新版的Python和Pandas。...0]) #代码运行结果: a 90 b 22.3 c Python dtype: object 22.3 90 如果字典对象中指定上index后,会根据指定的index值重排序...Copy是布尔值,如果为True,则拷贝输入数据。
分析 输入两个数a和b a可能小于b也可能大于b 如果a小于b,不做任何处理 反之,交换a和b 这类型的问题需要对不同的情况做不同的处理,这样的问题,顺序结构无法解决 分支结构的三种基本形式(单分支、双分支和多分支...Python语言解决 # 输入两个整数存放与a和b中,使得a中存放的数据小于b中存放的数据。...) elif x < 0 and y < 0: print('第三象限') elif x 0: print('第四象限') 问题:判断某一年是否为闰年 判断闰年的条件是...流程图 image.png Python语言实现 # 判断某一年是否为闰年 # 判断闰年的条件是:年份能被4整除但不能被100整除,或者能被400整除。...= 0) or (y % 400) == 0: print('{}年是闰年'.format(y)) else: print('{}年不是闰年'.format(y)) 讨论下述条件表达式
相反,如果原始数据datetime已经是 ISO 8601 格式了,那么pandas就可以立即使用最快速的方法来解析日期。这也就是为什么提前设置好格式format可以提升这么多。...我们仍然在使用某种形式的Python for循环,这意味着每个函数调用都是在Python中完成的,理想情况是它可以用Pandas内部架构中内置的更快的语言完成。...这个特定的操作就是矢量化操作的一个例子,它是在Pandas中执行的最快方法。 但是如何将条件计算应用为Pandas中的矢量化运算?...如果我们有更精细的时隙范围,你可能会争辩说这个解决方案是不可扩展的。...如果你的代码是许多for循环,那么它可能更适合使用本机Python数据结构,因为Pandas会带来很多开销。 如果你有更复杂的操作,其中矢量化根本不可能或太难以有效地解决,请使用.apply方法。
在有关基于 Python 的绘图库的系列文章中,我们将对使用 Pandas 这个非常流行的 Python 数据操作库进行绘图进行概念性的研究。...Pandas 是 Python 中的标准工具,用于对进行数据可扩展的转换,它也已成为从 CSV 和 Excel 格式导入和导出数据的流行方法。 除此之外,它还包含一个非常好的绘图 API。...这非常方便,你已将数据存储在 Pandas DataFrame 中,那么为什么不使用相同的库进行绘制呢? 在本系列中,我们将在每个库中制作相同的多条形柱状图,以便我们可以比较它们的工作方式。...(用于 Linux、Mac 和 Windows 的说明) 确认你运行的是与这些库兼容的 Python 版本 数据可在线获得,并可使用 Pandas 导入: import pandas as pd df...会自动知道我希望如何分组,如果我希望进行不同的分组,Pandas 可以很容易地重组 DataFrame。
图1 2 基于query()的高效查询 query()顾名思义,是pandas中专门执行数据查询的API,其实早在2014年,pandas0.13版本中这个特性就已经出现了,随着后续众多版本的迭代更新,...图2 正常读入数据后,我们分别使用传统方法和query()来执行这样的组合条件查询,不同的条件之间用对应的and or或& |连接均可: ❝找出类型为「TV Show」且国家不含「美国」的「Kids'...TV」 ❞ 图3 通过比较可以发现在使用query()时我们在不需要重复书写数据框名称[字段名]这样的内容,字段名也直接可以当作变量使用,而且不同条件之间不需要用括号隔开,在条件繁杂的时候简化代码的效果更为明显...但大家如果尝试过会发现一些不符合上述规范的变量名也不报错,譬如: 图4 因此可以记住只要在Python里作为变量名不报错,就可以直接填入字段名,否则需要在字段名两边加上`,譬如下面的例子: 图5 2.2...而pandas中的eval()有两种,一种是top-level级别的eval()函数,而另一种是针对数据框的DataFrame.eval(),我们接下来要介绍的是后者,其与query()有很多相同之处,
图1 2 基于query()的高效查询 query()顾名思义,是pandas中专门执行数据查询的API,其实早在2014年,pandas0.13版本中这个特性就已经出现了,随着后续众多版本的迭代更新...图2 正常读入数据后,我们分别使用传统方法和query()来执行这样的组合条件查询,不同的条件之间用对应的and or或& |连接均可: 找出类型为TV Show且国家不含美国的Kids' TV...图3 通过比较可以发现在使用query()时我们在不需要重复书写数据框名称[字段名]这样的内容,字段名也直接可以当作变量使用,而且不同条件之间不需要用括号隔开,在条件繁杂的时候简化代码的效果更为明显...而pandas中的eval()有两种,一种是top-level级别的eval()函数,而另一种是针对数据框的DataFrame.eval(),我们接下来要介绍的是后者,其与query()有很多相同之处,...,如果不用eval(),你是无法在不创建中间变量的前提下如此简洁地完成需求的: netflix.eval(''' years_to_now = 2020 - release_year
在数据分析行业,对数据提出的每一个问题都可以用多种潜在的语言和工具包来回答。每种语言都有其优势,它们之间也存在着不同的区别。不能否认的是,有些操作用Python执行起来要比SQL更加高效。...你可以使用pandas的DataFrame.describe()函数来得出基础数据集的基本描述性统计信息。...在SQL中,你可以输入这样的查询(query): ? 在Python中,只需以下代码便可快速得到相同的两周移动平均值: ? 另外,Python能够进一步实现可视化。...接下来,如果你想将结果按照年份分成几列,可以用SELECT语句为每个项单独创建列。 ? 虽然这能使你很好地控制查询和进程,但是用Python操作实则要更加轻松。...要想创建自连接(self join),需要先输入此查询,以便为同一张表创建不同的引用名称。 ? 在pandas中,我们可以这样实现: ? 想自己尝试建立自连接吗?
如果针对文件夹及其子文件夹下的子文件夹不同的Excel表名,而且Excel表格类型包括了.xls和.xlsx应该如何处理?要求一步到位。...二、实现过程 提问如下:假如你是一名Python程序员,现在你有一个自动化办公的需求,你桌面上有一个新建文件夹,该文件夹下的每一个子文件夹里面还有子文件夹,每个子文件夹都有不同名字的Excel表,但是这些...你可以使用Python的os、pandas和xlrd等模块来批量读取并修改Excel表格。...以下是一个可能的解决方案: import os import pandas as pd # 读取目标文件夹及子文件夹下的所有Excel文件 folder_path = r'C:\Users\YourFolder...你需要根据实际情况修改folder_path变量值,指向你的文件夹路径。 顺利地解决了问题,而且可以得到预期的效果。 三、总结 大家好,我是皮皮。
大家好,我是云朵君! Pandas 库功能非常强大,特别有助于数据分析与处理,并为几乎所有操作提供了完整的解决方案。一种常见的Pandas函数是pandas describe。...安装 与其他所有 python 包一样,可以通过 pip 包管理器轻松安装 Pandas 分析: pip install pandas-profiling 它也可以通过 Conda 包管理器安装: conda...字符串变量 对于字符串类型变量,您将获得不同(唯一)值、不同百分比、缺失、缺失百分比、内存大小以及所有具有计数表示的唯一值的水平条表示。...第 2 步:创建一个 Python 文件并以此格式编写代码 import pandas as pd import pandas_profiling import streamlit...Profiling”——从 Pandas DataFrame 生成报告的一站式解决方案。
总之如果你想提升自己的Python技能,欢迎加入《挑战30天学完Python》 Day 25 Pandas Pandas是Python程序语言中一种开源、高性能、易于使用的数据结构和数据分析工具。...一个 series 是一个 column,一个DataFrame是一个由series 集合组成的多维表 。为了创建pandas series,我们使用numpy来创建一个一维数组或python列表。...如果我们想要有多个列,我们使用 data frames。下面的例子展示了pandas数据框架。 DataFrame 是行和列的集合。...现在,让我们导入pandas和numpy,通常它俩是很好的组合。...Year'] = df['Current Year'].astype('int') print(df['Current Year'].dtype) dtype('int32') 现在,出生年份和当前年份的列值是整数
这意味着要花费15秒的时间来编写代码,并且在15毫秒的时间内跑出结果。 当然,根据数据集的不同,库文件、硬件版本的不同,所以实际结果可能会有所不同。 那么什么是向量化?...其中,你的选择可以是标量,也可以是数组。只要它符合你的条件。 这是我们第一次尝试将多个条件从.apply()方法转换为向量化的解决方案。...使用.apply执行基本的Python是更快的选择。 一般来说,我们还建议你使用str方法来避免循环,但是如果你的速度变慢了,这会让你很痛苦,试试循环是否能帮你节省一些时间。...为了解决这个问题,我们对Pandas中的一个series使用.shift()将前一行移到相同的级别。一旦它们被转移到相同的级别,我就可以使用np.select()执行相同的条件向量化方法了!...np.where →一个逻辑条件 np.select →2+逻辑条件 如果你正在处理字符串/正则表达式函数,那么最好还是使用Python。
Python编程语言是数据科学和预测分析的绝佳选择,因为它配备了多个软件包,可满足您的大部分数据分析需求。...如果我是一个赌博的人(我当然是一个赌博的人),我可以使用前几季的历史数据建立一个模型来预测即将到来的那个。...然后,加载Pandas并重命名以pd提高效率。您可能还记得,这pd是Pandas的常见别名。...Teams = conn.execute(query).fetchall() 提示:如果您想了解有关在Python中使用SQL的更多信息,请考虑使用DataCamp的Python数据库简介 pandas...这样做是因为如果您决定在测试模型的相同数据上训练模型,您的模型可以轻松地过度拟合数据:模型将更多地记住数据而不是从中学习,这导致过于复杂的模型你的数据。
Python 提供了多种可视化工具,HvPlot 是其中一个出色的库,专为简单且高效的交互式可视化设计。...用户可以选择汽车的制造年份,动态地看到不同年份下汽车的马力与加速之间的关系。...# dashboard.servable() # 如果你使用的是纯 Python 脚本,使用以下命令来启动服务器 dashboard.show() 在这个例子中,我们首先导入了必要的库,然后清洗了...要注意的是,如果你在 Jupyter Notebook 上运行这段代码,需要调用dashboard.servable()来显示面板。...如果是在纯 Python 环境中,需要使用dashboard.show()来启动一个服务器,并在浏览器中查看面板。 这只是 HvPlot 功能的冰山一角。
领取专属 10元无门槛券
手把手带您无忧上云