从一个CSV列到其他CSV列的单词频率可以通过以下步骤进行:
import pandas as pd
df = pd.read_csv('file1.csv', usecols=['target_column'])
df.dropna(inplace=True) # 删除空值
df.drop_duplicates(inplace=True) # 删除重复项
import nltk
from nltk.tokenize import word_tokenize
from nltk.corpus import stopwords
from nltk.stem import PorterStemmer
nltk.download('punkt')
nltk.download('stopwords')
stop_words = set(stopwords.words('english'))
ps = PorterStemmer()
def process_text(text):
tokens = word_tokenize(text.lower()) # 分词并转换为小写
tokens = [token for token in tokens if token.isalpha()] # 仅保留字母字符
tokens = [token for token in tokens if token not in stop_words] # 去除停用词
tokens = [ps.stem(token) for token in tokens] # 词干提取
return tokens
df['processed_text'] = df['target_column'].apply(process_text)
from nltk import FreqDist
word_freq = FreqDist([word for text in df['processed_text'] for word in text])
word_freq_df = pd.DataFrame.from_dict(word_freq, orient='index', columns=['frequency'])
word_freq_df.index.name = 'word'
word_freq_df.sort_values(by='frequency', ascending=False, inplace=True)
word_freq_df.to_csv('word_frequency.csv')
以上是从一个CSV列到其他CSV列的单词频率的基本步骤。对于具体的应用场景和推荐的腾讯云相关产品和产品介绍链接地址,由于题目要求不能提及具体的品牌商,故无法给出相关推荐。如果有其他问题或需要进一步的帮助,请提供具体信息以供参考。
没有搜到相关的沙龙
领取专属 10元无门槛券
手把手带您无忧上云