你是否遇到过这种情况?——外出与小孩散步,TA发现一朵很漂亮的花,跑过来问你是什么,但是你突然愣住了—因为你并不知道它是什么花。 目前世界上至少存在250000种花,即便是经验丰富的植物学者也很难全部认识它们。如果现在告诉你以后不用尴尬对小孩承认你并不知道它是什么花,不久之后你就能在无论什么时候都能马上认出任何一种花卉或者任何植物的品种,会不会很期待? 鉴于目前图像识别的强大能力以及使用智能手机随手拍照的便利,普通人通过使用工具也能轻松的识别各种花卉。这个工具叫做智能花卉识别系统(Smart Flower
“无穷小亮的科普日常”经常会发布一些鉴定网络热门生物视频,既科普了生物知识,又满足观众们的猎奇心理。今天我们也来鉴定一下网络热门植物!最近春天很多花都开了,我正好趁着清明假期到户外踏青并拍摄了不少花卉的照片。
结果,AI一顿操作猛如虎,进行了判断:左边的是桃面牡丹鹦鹉,右边的是国家保护动物费氏牡丹鹦鹉,二者区别仅在于喙的颜色以及白色眼圈。
前面介绍了「AI产品经理需要具备的能力和对数据、算法需要理解的程度」、「机器学习的实际训练过程」,后面将围绕AI产品在当前环境下的热门应用来进行探讨,涵盖了语音识别、图像识别、NLP自然语言处理、知识图谱等产品化落地的场景。
AI科技评论报道 编辑:琰琰 话说,你能看出上面这三只鹦鹉有什么不一样吗?脸盲如我,要使出玩“我们来找茬”的十级能力。 AWSL,鹦鹉鹦鹉,傻傻分不清楚。 结果,AI一顿操作猛如虎,进行了判断:左边的是桃面牡丹鹦鹉,右边的是国家保护动物费氏牡丹鹦鹉,二者区别仅在于喙的颜色以及白色眼圈。 小鸟并不孤单,猫猫狗狗和花花草草也在被“找茬”。 最近,浙江大学和阿里安全在AI细粒度图像识别技术上取得了新进展,利用RAMS-Trans相关技术先后在公开数据集CUB(鸟类识别)、St
AI技术的火爆无疑是近几年创新应用上的一次革命。如今AI技术在众多科技公司的推动下已经渗透到各行各业,气象行业也不例外。将AI融入到天气预报、大气探测、天气预警以及天气服务中的尝试一直未间断。AI技术的应用背后是大数据的支撑和机器学习的广泛探索。利用AI技术进行雷达图像的识别,进行短临预报;利用AI技术与数值模式结合提升预报的准确率;利用AI技术进行探测数据的质量控制和融合处理;利用AI技术进行天气预警的精准推送;利用AI技术进行大雾的识别、天气现象的识别等等,可以说AI已经在气象领域中全面开花。在复杂的大气物理、化学等机理研究难以取得突破时,融入AI技术是提升气象技术的有利补充。关于天气预报、探测等AI技术的应用上经验比较少,跟大家分享一下我参与实施的在公众气象服务中的一些尝试应用。
杨净 丰色 发自 凹非寺 量子位 报道 | 公众号 QbitAI 你算个什么鸟? 面对上面这两张图,一个AI发出了灵魂拷问。 左边桃面牡丹鹦鹉,右边费氏牡丹鹦鹉。 一眼识破的它早就看到左边的鸟的喙部和眼圈与右边的不一样。 不行,再来!再来看这组。(文末揭晓答案) 好,我放弃了。 这个来自浙大计算机学院和阿里安全的“找茬”选手,识别准确率达到了91.3%,已经是业内最优水平。研究成果已被多媒体国际顶会ACM MM 2021收录。 不光鸟,阿猫阿狗也能行,甚至花草植物也能行。 看看这连两张照片,吉娃
微信小程序图像识别源码,微信小程序百度AI接口源码,微信小程序图片上传显示缩放缩略图,人工智能,图像识别,人脸颜值分析,植物、动物、车型、LOGO、食材、手写文字识别、AI算命等。
利用计算机图像识别、地址库、合卷积神经网提升手写运单机器有效识别率和准确率,大幅度地减少人工输单的工作量和差错可能。
在我居住的地方很多小路和道路两旁都有花草树木。我所在的社区因其每年的枫树节而闻名,枫树对我来说很容易识别。然而,还有许多其他的树我无法识别名字。花也是如此:蒲公英很容易发现,但我不知道在我的步行道上的野花的名字。
你看好农业机器人发展么?你最期待机器人为你提供哪些帮助呢? 如今,农业机器人已经能完成播种、种植、耕作、采摘、收割、除草、分选以及包装等工作,物料管理、播种和森林管理、土壤管理、牧业管理和动物管理等工作机器人也能实现。可以说,农用机器人已成为农民种养殖最好的帮手! 智能植物识别软件,让你轻松变成农作物达人 以前我们要通过查阅资料才能知道的花草,现在只需要各种识图软件拍照、扫描就知道了,这就是电脑图像识别技术。如今智能图像识别准确率越来越高,不仅仅帮助识别农作物,还能帮农户识别农作物的各种病虫害。 农
课程大作业的目的是:运用在本次课程中学到的知识来指导实践,了解程序设计其实现方法,学会解决实际问题。掌握微信小程序设计的具体步骤与基本方法,针对选定的程序做调研分析。通过课程大作业,提高实践动手技能,培养独立分析分析问题和解决问题的能力。 课程大作业的要求:本次课程大作业的选题比较灵活,可以是自主选题,也可以参考课本中的案例自行修改完善,题目要符合课程大作业的要求,并且具备一定的水平和深度。
云栖君导读:深度学习算法与计算机硬件性能的发展,使研究人员和企业在图像识别、语音识别、推荐引擎和机器翻译等领域取得了巨大的进步。六年前,视觉模式识别领域取得了第一个超凡的成果。两年前,Google大脑团队开发了TensorFlow,并将深度学习巧妙的应用于各个领域。现在,TensorFlow则超越了很多用于深度学习的复杂工具。 利用TensorFlow,你可以获得具有强大能力的复杂功能,其强大的基石来自于TensorFlow的易用性。 在这个由两部分组成的系列中,我将讲述如何快速的创建一个应用于图像识别的卷
作者:lincolnlin,腾讯 WXG 专家研究员 微信识物是一款主打物品识别的 AI 产品,通过相机拍摄物品,更高效、更智能地获取信息。2020 年,微信识物拓展了更多识别场景,上线了微信版的图片搜索。本篇文章将与大家分享微信识物从识物拓展到通用图像搜索领域的发展过程。 微信识物 以上小视频简单介绍了识物的产品形态,它对微信扫一扫的扫封面能力进行了升级。打开微信扫一扫,左滑切换到“识物”功能,对准想要了解的物品正面,可以获取对应的物品信息,包括物品百科、相关资讯、相关商品。在微信识物发布不久,也
有一群人注定为改变世界而活,有一群人正在为影响10亿人而战。5月31日下午,在“奇点大学中国区学员选拔大赛总决赛”的赛场上,从数百个参赛者中脱颖而出,来自移动应用、智能硬件、航天工程、生物医疗、人工智
【新智元导读】iNaturalist 推出一个识别动物和植物物种的app,使用TensorFlow训练神经网络,已经能够识别出超过10000种不同的物种,而且每1.7小时模型增加1个新的物种。 iNaturalist.org 推出了一个 Android 和 iOS 应用程序,可以在物种层面自动识别动物和植物。这个app使用 TensorFlow 进行训练,已经能够识别出超过10000种不同的物种,而且每1.7小时模型增加1个新的物种。 iNaturalist.org 是一个成立已久的受欢迎的网站,其使命是将
智能农业是一项通过整合现代信息技术,尤其是机器学习技术,以提高农业生产效率和质量的创新农业方式。本项目将重点关注机器学习在粮食产业中的应用,以优化种植、管理和收割等各个环节,提高粮食产业的整体效益。
本文主要探索了如何使用Tensorflow对黑白照片进行着色处理,通过一个编码-解码的模型实现。该模型融合了Inception-ResNet-V2模型,提高了图像着色的准确性。实验结果表明,该方法可以提高图像着色的准确性,但仍有提升空间。
本文涵盖了所有行业中各种创新且有价值的计算机视觉应用。一起来了解市场上最好的计算机视觉项目、计算机视觉创意和高价值案例吧。
简介:针对水稻病害虫害检测精度低、速度慢、模型体量大、部署困难等问题,本研究提出了轻量化YOLOv4-GhostNet水稻病虫害识别方法:1)利用幻象模块代替普通卷积结构,替换主干特征提取网络CSPDarkNet53,构建GhostNet特征提取结构;2)改进YOLOv4网络的加强特征提取部分PANet结构;3)利用迁移学习与YOLOv4网络训练技巧;4)模型对水稻病虫害检测的平均精确度达到89.91%,检测速度可达每秒34.51 帧,体量缩减为42.45 MB;5)与YOLOv4网络相比,网络规模减小了93.88%、网络参数缩减为原来的8.05%、训练速度每秒钟提升了11.59 帧。
雷锋网 AI 研习社按:计算机视觉技术从 70 年代到现在,40 多年时间得到迅速发展,许多计算机视觉的应用出现在了生产生活领域。尤其是到了 2012 年,基于深度学习的图像识别技术出现,极大地提高了计算机视觉的识别精确度,在一些特定场景下,机器的识别错误率已经远低于人眼识别的错误率。与此同时,研究员也发现在真实世界中,那些细粒度,实例级级别的物体识别还存在很大的挑战! 为了能使这一领域得到快速突破,谷歌向全球 CV 领域的开发者们发送了 iNaturalist 2018 挑战赛的邀请函。iNaturali
几天前,我收到了 Plant Village 的一个问题,Plant Village 是一个和我合作的团队,他们正在开发一个 app 。它可以检测植物的病害,当它指向叶子的时候可以得到很好的结果,但是如果你把它指向电脑键盘,它会认为这是受损的作物。
随着生活水平不断提升,民众对食品安全也越来越关注,在欧洲,消费者非常在意“舌尖上的安全”,希望食品有一个安全的供应链,当然,也希望生物的多样性得到保护。
吴恩达导师、伯克利大学教授Micheal I. Jordan在近期接受大数据文摘访问时,描绘了这样一个认知物联网的应用场景:在网上下单买一台冰箱运到北美,并确保其在一周内送到。 这件司空见惯的小事绝没有听起来那么简单。 首先,这台冰箱不能在下单的时候才从印度装船,企业需要考虑,怎样才能保证5个月前冰箱已经被造出来,并被送到正确的地址;其次,企业需要考虑意外情况出现,比如印度洋上遇上了台风,船只不能运作了,怎么办? 满足这些需求要大量的数据支持和精密的计算。人类无法做这些规划,但统计学和
图像识别部分接口Java-API调用示例代码 https://gitee.com/xshuai/ai/不是完整的web项目大家没必要下载运行。复制|下载相关代码即可 准备工作 已经创建了图像识别应用并且拿到apikey sercetkey得到AccessToken 代码中所用到的Java对象类所在目录https://gitee.com/xshuai/ai/tree/master/AIDemo/src/main/java/com/xs/pojo/image 代码中所用到的工具类 https://gitee.c
如若苹果收购Beats传言为真,软硬云结合的智能音乐必将兴起。此前Google Glass已掀起了一股智能多媒体之风。智能耳机、音箱和音乐盒是声音的智能化,Oculus、蚁视则是显示智能化,这两个领域均发生大规模的并购事件倍受关注。 下一个智能多媒体领域是什么呢?答案是摄像头。小度i耳目正在通过母亲节、幼儿园合作等公益活动走向民间,Foream等摄像头创业项目越来越多,Intel则在大力发展3D摄像头等技术。 智能摄像头成为计算机 雷科技曾经发布亮风台的《摄像头智能化三部曲:从拍照到智能交互》
大数据文摘出品 假如你是一名地铁安检,你的眼前以每秒三次的频率闪现这样的图像,你能发现其中一个行李里面携带了枪支吗? 不是很难,对吧? 不过,现实中的工作不是这么简单,一眼看到还不够,后续还要进行一些操作,比如按下暂停按钮或者人工上报,这些往往更耽误时间。 这时候你可能会想,能不能用AI呢? 的确,AI识别危险物品现在也能做到又快又准,不过,哪怕是最先进的AI,准确率也不能达到100%,对于一些不是很重要的任务,AI或许可以独立完成,但是对于安检这样的重要任务,往往只能依靠人工检测。 人脑本身处理图像的速
大家都知道,Wolfram很喜欢黑客松,或者说我们的技术很适合这种节奏快、压力大的活动。到现在为止,我们已经赞助或者参加过很多黑客松活动,包括HackIllinois, MHacks, LAHacks
虽然许多人正在寻找“杀手级”的视觉,但更有可能视觉是AI和计算机的“杀手级应用”。
最近在深度学习算法和硬件性能方面的最新进展使研究人员和公司在图像识别,语音识别,推荐引擎和机器翻译等领域取得了巨大的进步。六年前,首次机器在视觉模式识别方面的表现首次超过人类。两年前,Google Brain团队发布了TensorFlow,让深度学习可以应用于大众。TensorFlow超越了许多用于深度学习的复杂工具。 有了TensorFlow,你可以访问具有强大功能的复杂特征。它之所以如此强大,是因为TensorFlow的易用性非常好。 本文由两部分组成,我将介绍如何快速创建用于实际图像识别的卷积神经网络
在百度第五届Hackathon(百度内部编程马拉松)上,李彦宏一如既往地参与点评。据百度内部同学爆料,这次李彦宏尤其被一个美女博士领衔的学生团队“赏花宝典”应用所吸引。 88年美女博士与“赏花宝典” 据百度同学说本次Hackathon是首次对外开放,有6支校园高手组队参加Hackathon。其中一支名为TAGroup的校园代表队leader是88年美女博士古晓艳,目前在中科院计算所读大数据方向的博士。 通过主动争取李彦宏的注意,这个团队的Demo(原型)吸引了李彦宏。这个Demo被命名为“赏花宝典”。基于手
这是一个典型的美国故事,主人公过上了红酒牛排大 house 的生活,但又遇到了新的烦恼:后院里为鸟儿准备的食盘总是被松鼠光顾。
场景描述:谷歌在年底发布了年度搜索热榜,今年的搜索热词聚焦在了「英雄」。与此同时,逐渐将自己的战略重心移向 AI 的谷歌,也正在用更多的 AI 技术造福社会,成就现实生活中的英雄梦想。
原作 Billy Rutledg Root 编译自 blog.google 量子位 出品 | 公众号 QbitAI 今天,谷歌AIY项目新推出视觉感知套件Vision Kit。 AIY系列项目(全称是
Learn how to classify images with TensorFlow 使用TensorFlow创建一个简单而强大的图像分类神经网络模型 by Adam Monsen ▌引言 由于深度学习算法和硬件性能的快速发展,研究人员和各大公司在图像识别,语音识别,推荐引擎和机器翻译等领域取得了长足的进步。六年前,在计算机视觉领域首先出现重大突破,这其中以CNN模型在ImageNet数据集上的成功为代表。两年前,Google Brain团队开源TensorFlow,使得我们可以灵巧快速地开发自己的
Learn how to classify images with TensorFlow 使用TensorFlow创建一个简单而强大的图像分类神经网络模型 by Adam Monsen ▌引言 ---- 由于深度学习算法和硬件性能的快速发展,研究人员和各大公司在图像识别,语音识别,推荐引擎和机器翻译等领域取得了长足的进步。六年前,在计算机视觉领域首先出现重大突破,这其中以CNN模型在ImageNet数据集上的成功为代表。两年前,Google Brain团队开源TensorFlow,使得我们可以灵巧快速地
微信扫一扫识物为直达微信内部生态的新窗口,提供电商、百科、资讯等信息。目前微信扫一扫识物提供的服务有:图像识别、图像搜索、二维码识别、文字提取。
随着科技的迅速发展,智能决策支持系统在农业领域的应用成为提高农业生产效益和可持续发展的重要手段。
雷锋网 AI 研习社按,随着生活水平的提高,人们越来越关注身边的环境及植物,因此植物识别的需求也日益增多。但植物种类繁多,同一种植物也因生长周期、生长环境及基因变异影响,导致形态各有不同甚至差异极大,因此植物识别一直是人工智能识别领域极具挑战性的一个领域。 植物的识别过程需要排除因光线、角度、背景、遮挡程度、清晰程度及植物形态细微差异等各种影响,才能完成对植物种类的精确识别。 为了解决诸如此类的问题,CVPR 专门为数据科学家们准备了一个针对细粒度视觉分类的研讨会(FGVC5 workshop)。作为本次研
加上踩坑一共花了3个小时左右 代码已放置github https://github.com/dmhsq/image-recognition-flask-uniapp 效果如下 手机也跑通了 但是
2017政府工作报告,指出要加快培育壮大包括人工智能在内的新兴产业,“人工智能”也首次被写入了全国政府工作报告。百度李彦宏,腾讯马化腾都在两会上就人工智能发表意见。科大讯飞刘庆峰在朋友圈分享了讯飞听见支持两会直播的消息。结合上月科技部新闻,“科技创新2030—重大项目”或将新增“人工智能2.0”,人工智能在中国的政治、经济、学术领域都成为重中之重。这是中国 AI人最好的时代——2017年,中国人工智能迎来真正的新纪元。
北京时间2021年1月21日,深圳市人工智能行业协会执行会长郎丽艳一行走访腾讯科技(深圳)有限公司,为腾讯优图颁发“副会长单位”牌匾。
监督学习是一种利用带有标签的数据进行训练的方法,通过学习输入特征与输出标签之间的关系来进行预测。无监督学习则是在没有标签的情况下,发现数据中的模式和结构。这两种方法各有优势,在不同场景下有着广泛的应用。
在过去的一年多里,GPT凭借其强大的性能在全球范围内引起了轰动,并成为广受瞩目的技术。GPT的概念不仅征服了市场,更被视为下一个引领潮流的趋势。随着资本的涌入,AI应用得到了迅猛的发展,推动了整个AI应用产业链的繁荣。在这个蓬勃发展的背景下,向量数据库成为了其中最受追捧的应用之一。
以上这些便利的功能,都使用了图像标签。它们背后的AI算法是如何读懂一张图片的呢?图像标签还有哪些应用?希望这篇文章可以回答你的疑问。
科学是在思索与实验中成长的婴儿,试着从更简单开始,也许只需要研究相当于一个儿童智慧的智能系统,然后再让这个系统不断去学习——这种思路可能是人类接近解决智能问最优方式。
普通人与AI的距离还有多远? 对于公益,AI将带来什么样的可能性? 一个不懂编程的人,如何快速开发出一款具有AI能力的小程序? ...... 这些问题的答案,在首届腾讯Light·公益创新挑战赛得到了最好的诠释。 在「未成年人网络保护」、「“适老化”无障碍设计」和「野生动植物保护」三个赛道,通过调用腾讯云AI技术,参赛者们设计和开发出了诸多兼具创意、实用和技术性的科技公益小程序作品。 在这些作品中,我们看到科技硬壳之下包裹着的温情内核,看到用AI技术推动公益事业发展正在成为一种全新的探索。 新
领取专属 10元无门槛券
手把手带您无忧上云