首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

海运时间序列图上的标签

是指在海运时间序列图中用于标识和描述不同事件、数据或状态的标签。这些标签可以帮助用户更好地理解和分析海运数据,从而做出相应的决策和优化。

海运时间序列图是一种用于展示海运运输过程中各种数据和事件的图表。它通常以时间为横轴,以某种指标(如货物数量、运输时间等)为纵轴,通过曲线或柱状图等形式展示数据的变化趋势。在海运时间序列图中,标签可以用于标识以下内容:

  1. 事件标签:海运时间序列图可以标识各种与海运运输相关的事件,如装船、卸货、船舶抵达港口、船舶离港等。通过这些事件标签,用户可以清晰地了解每个事件发生的时间和顺序,从而更好地掌握整个海运过程。
  2. 数据标签:海运时间序列图可以标识各种与海运数据相关的信息,如货物数量、运输时间、运费等。通过这些数据标签,用户可以直观地了解不同数据的数值和变化趋势,从而进行数据分析和对比。
  3. 状态标签:海运时间序列图可以标识各种与海运状态相关的信息,如船舶状态(停靠、航行)、货物状态(装船、卸货)、港口状态(开放、关闭)等。通过这些状态标签,用户可以及时了解海运过程中各个环节的状态,从而做出相应的调整和决策。

海运时间序列图上的标签可以帮助用户更好地理解和分析海运数据,从而优化海运运输过程,提高效率和准确性。对于海运行业的相关从业人员和企业,了解和使用海运时间序列图上的标签是非常重要的。

腾讯云提供了一系列与海运数据分析和可视化相关的产品和服务,如云数据库、云服务器、云存储等。通过这些产品和服务,用户可以方便地存储、处理和分析海运数据,并生成相应的时间序列图和标签。具体产品和服务的介绍和链接地址可以参考腾讯云官方网站。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

时间序列时间序列智能异常检测方案

传统阈值和智能检测 现实问题中比如监控场景,对于百万量级时间序列,而且时间序列种类多,如何找到通用算法同时监控百万条指标曲线?...数据形式 时间序列是一组按照时间发生先后顺序进行排列数据点序列。通常一组时间序列时间间隔为一恒定值(如10秒,1分钟,5分钟)。...不同曲线形态时间序列 根据以上平稳、周期性、趋势性等特征,将时间序列划分为不同曲线形态。...时间序列预测ARMA模型可参考作者之前发表KM文章《【时序预测】一文梳理时间序列预测——ARMA模型》。...时间序列预测模型决策路径如下,这一小节详细内容将在后续时间序列预测模型KM文章中详细阐述,敬请关注。

21.8K2914

【时序预测】时间序列分析——时间序列平稳化

时间序列平稳化处理 将非平稳时间序列转化成平稳时间序列,包含三种类型:结构变化、差分平稳、确定性去趋势。本文脉络框架如下: image.png 1.1....可以进行一个关于常数、时间t线性或多项式回归,从回归中得到残差代表去趋势时间序列,多项式阶数可以用F检验确定 随机性趋势比如随机游走过程出现时,构建ARMA模型; 注意:当知道时间序列包含一个确定性时间趋势时...定理内容 Wold分解定理:对于平稳时间序列时间序列=完全由历史信息确定线性组合的确定性趋势部分+零均值白噪声序列构成非确定性随机序列。...Cramer分解定理:对于任何时间序列时间序列=完全由历史信息确定多项式的确定性趋势部分+零均值白噪声序列构成非确定性随机序列。...模拟回归方程法,把时间作为自变量,序列作为因变量,建立序列时间变化回归模型。 3.1. 移动平均法 通过取该时间序列特定时间点周围一定数量观测值平均来平滑时间序列不规则波动部分。

11.1K62
  • 时间序列Transformer

    流行时间序列预处理技术包括: 只需缩放为[0,1]或[-1,1] 标准缩放比例(去除均值,除以标准偏差) 幂变换(使用幂函数将数据推入更正态分布,通常用于偏斜数据/存在异常值情况) 离群值去除 成对差异或计算百分比差异...季节性分解(试图使时间序列固定) 工程化更多特征(自动特征提取器,存储到百分位数等) 在时间维度上重采样 在要素维度中重新采样(而不是使用时间间隔,而对要素使用谓词来重新安排时间步长(例如,当记录数量超过...如果您时间序列可以通过进行季节性分解等预处理而变得平稳,则可以使用较小模型(例如NeuralProphet或Tensorflow Probability)(通过更快速训练并且所需代码和工作量更少...将序列长度视为一个超参数,这导致我们得到类似于RNN输入张量形状:(batch size, sequence length, features)。 这是设置为3所有尺寸图形。 [图片上传中......这种可学习嵌入与时间无关!最后,连接原始输入。 这是每个输入要素类别(每个要素1个学习线性分量和1个学习周期性分量)学习时间嵌入示意图,它们不同。

    1.6K30

    【GEE】8、Google 地球引擎中时间序列分析【时间序列

    1简介 在本模块中,我们将讨论以下概念: 处理海洋遥感图像。 从图像时间序列创建视频。 GEE 中时间序列分析。 向图形用户界面添加基本元素。...将图像集添加到地图后,我们可以使用检查器工具在地图上选择一个位置,并查看所选位置在 17 年时间段内叶绿素 a 中值浓度直方图。石油泄漏发生在 2010 年,我们图像从 2002 年开始。...这意味着直方图上第八个位置代表 2010 年。您可以通过将直方图上值与 2009 年和 2010 年栅格中值进行比较来验证这一点。检查器工具将在您选择位置显示所有图像值。...重要是数据就在那里,只是需要付出努力。 7结论 在本模块中,我们开发了一种方法,使我们能够查看墨西哥湾藻类浓度时间序列数据,以估计深水地平线漏油事件对该生态系统基础营养级影响。...该系统规模和复杂性表明,要得出有关实际影响结论性结果将需要大量额外工作。但是从这个过程中可以清楚地看出,GEE 提供了进行时间序列分析计算能力和灵活性。

    45450

    时间序列分解:将时间序列分解成基本构建块

    大多数时间序列可以分解为不同组件,在本文中,我将讨论这些不同组件是什么,如何获取它们以及如何使用 Python 进行时间序列分解。...时间序列组成 时间序列是(主要)三个组成部分组合:趋势、季节性和残差/剩余部分。让我们简单解释这三个组成部分 趋势:这是该序列整体运动。它可能会持续增加、也可能持续减少,或者是波动。...它也可以被认为只是统计噪声,或者是临时性事件影响,这个残差量也有一个单独周期分量,但它通常被归入趋势分量。 加法模型与乘法模型 这些组件组合方式取决于时间序列性质。...但是我们看到残差在早期和后期具有更高波动性。所以在为这个时间序列构建预测模型时,需要考虑到这一点。 总结 在这篇文章中,我们展示了如何将时间序列分解为三个基本组成部分:趋势、季节性和残差。...最后通过分解时间序列有助于建立对数据理解,从而更容易做出未来预测。 作者:Egor Howell ----

    1.3K10

    深度学习时间序列综述

    模型时间序列预测方法;最后结合深度学习应用于时间序列预测任务存在问题与挑战对未来该方向研究趋势进行了展望。...基于深度学习时间序列预测算法发展脉络如图1 所示: 时间序列预测是时间序列任务中最常见和最 重要应用,通过挖掘时间序列潜在规律,去进行 类推或者延展用于解决在现实生活中面临诸多 问题,包括噪声消除...时间序列预测任务根据所预测时间跨度长短,可划分为四类,具体如图2 所示: 文章余下部分主要介绍基于深度学习时间 序列预测算法研究,其中第二节介绍时间序列数据 特性,第三节介绍了时间序列预测任务常用数据...2 时间序列数据特性 时间序列预测是对前 t -1个时刻历史数据学 习分析,来估计出指定未来时间数据值。...(4)波动性:随着长时间推移和外部多因素影响,时间序列方差和均值也可能会发生系统变化,在一定程度上影响时间序列预测准确度。

    34440

    基于 Prophet 时间序列预测

    预测未来永远是一件让人兴奋而又神奇事。为此,人们研究了许多时间序列预测模型。然而,大部分时间序列模型都因为预测问题过于复杂而效果不理想。...这是因为时间序列预测不光需要大量统计知识,更重要是它需要将问题背景知识融入其中。...总之,传统时间序列预测在模型准确率以及与使用者之间互动上很难达到理想融合。...其中g(t)表示增长函数,用来拟合时间序列中预测值非周期性变化;s(t)用来表示周期性变化,比如说每周,每年中季节等;h(t)表示时间序列中那些潜在具有非固定周期节假日对预测值造成影响。...图中黑点表示已知历史数据,由图上我们很容易发现数据中异常点,蓝色曲线表示模型预测值。仔细查看蓝色曲线,我们可以发现,曲线轮廓上下边界有浅蓝色区域,它表示模型预测值上、下边界。

    4.5K103

    深度学习时间序列综述

    模型时间序列预测方法;最后结合深度学习应用于时间序列预测任务存在问题与挑战对未来该方向研究趋势进行了展望。...基于深度学习时间序列预测算法发展脉络如图1 所示: 时间序列预测是时间序列任务中最常见和最 重要应用,通过挖掘时间序列潜在规律,去进行 类推或者延展用于解决在现实生活中面临诸多 问题,包括噪声消除...时间序列预测任务根据所预测时间跨度长短,可划分为四类,具体如图2 所示: 文章余下部分主要介绍基于深度学习时间 序列预测算法研究,其中第二节介绍时间序列数据 特性,第三节介绍了时间序列预测任务常用数据...2 时间序列数据特性 时间序列预测是对前 t -1个时刻历史数据学 习分析,来估计出指定未来时间数据值。...(4)波动性:随着长时间推移和外部多因素影响,时间序列方差和均值也可能会发生系统变化,在一定程度上影响时间序列预测准确度。

    80410

    用于时间序列预测AutoML

    作者 | Denis Vorotyntsev 来源 | Medium 编辑 | 代码医生团队 最近,参加了AutoSeries —时间序列数据AutoML竞赛,在其中设法获得40个竞争对手(决赛中...http://automl.chalearn.org/ 这项挑战旨在为时间序列回归任务提出自动化解决方案。...AutoSeries仅限于多元回归问题,这些问题来自不同时间序列域,包括空气质量,销售,工作状态,城市交通等。...Id功能组合标识一个变量(时间序列)。 给定数据集示例。数据被混淆了,但是有一些时间序列模式 参与者必须提交代码,这些代码将在Docker容器中运行(CPU:4核,16 Gb RAM,无GPU)。...所有使用功能均按“获得”重要性进行排序,即使用该功能拆分总增益之和。然后,将对前n个最 重要数字特征进行选择。 下一批功能基于数据时间序列性质:先前值和差异。

    1.9K20

    Python中时间序列分解

    时间序列分解是一种技术,它将时间序列分解为几个部分,每个部分代表一个潜在模式类别、趋势、季节性和噪声。在本教程中,我们将向您展示如何使用Python自动分解时间序列。...首先,我们来讨论一下时间序列组成部分: 季节性:描述时间序列周期性信号。 趋势:描述时间序列是随时间递减、不变还是递增。 噪音:描述从时间序列中分离出季节性和趋势后剩下东西。...否则,如果趋势和季节性变化随时间增加或减少,那么我们使用乘法模型。 我们这里数据是按月汇总。我们要分析周期是按年所以我们把周期设为12。...同样,我们可以一次绘制每个组件 result.plot() 总结 通常,在查看时间序列数据时,很难手动提取趋势或识别季节性。...幸运是,我们可以自动分解时间序列,并帮助我们更清楚地了解组件,因为如果我们从数据中删除季节性,分析趋势会更容易,反之亦然。 作者:Billy Bonaros deephub翻译组

    2.1K60

    时间序列数据预处理

    时间序列数据随处可见,要进行时间序列分析,我们必须先对数据进行预处理。时间序列预处理技术对数据建模准确性有重大影响。 在本文中,我们将主要讨论以下几点: 时间序列数据定义及其重要性。...时间序列数据预处理步骤。 构建时间序列数据,查找缺失值,对特征进行去噪,并查找数据集中存在异常值。 首先,让我们先了解时间序列定义: 时间序列是在特定时间间隔内记录一系列均匀分布观测值。...时间序列数据预处理 时间序列数据包含大量信息,但通常是不可见。与时间序列相关常见问题是无序时间戳、缺失值(或时间戳)、异常值和数据中噪声。...时间序列去噪 时间序列噪声元素可能会导致严重问题,所以一般情况下在构建任何模型之前都会有去除噪声操作。最小化噪声过程称为去噪。...可能面试问题 如果一个人在简历中写了一个关于时间序列项目,那么面试官可以从这个主题中提出这些可能问题: 预处理时间序列数据方法有哪些,与标准插补方法有何不同? 时间序列窗口是什么意思?

    1.7K20

    时间卷积网络TCN:时间序列处理新模型

    TCN提供了一种统一方法来以层次方式捕获所有两个级别的信息。 编码器-解码器框架如图1所示,最关键问题如下:TCN可以接受任意长度序列,并将其输出为相同长度。...在他们工作中,进行了TCN和LSTM对比实验。他们结果之一是,在其他方法中,TCN在时间序列数据预测任务中表现良好。 ?...时间序列预测改进了许多业务决策场景(例如,资源管理)。概率预测可以从历史数据中提取信息,将未来事件不确定性降到最低。...他们框架可以了解到序列之间潜在相关性。他们工作中新奇之处在于他们提出深层TCN,正如在他们架构中所呈现: ? 编码器-解码器模块解决方案可以帮助设计实际大规模应用。...总结 在这篇文章中,我们介绍了最近工作,包括时间卷积网络,比经典CNN和RNN方法更好地完成时间序列任务。 参考文献 Lea, Colin, et al.

    3K40

    时间序列异常检测方法总结

    在本文中将探索各种方法来揭示时间序列数据中异常模式和异常值。 时间序列数据是按一定时间间隔记录一系列观测结果。它经常在金融、天气预报、股票市场分析等各个领域遇到。...分析时间序列数据可以提供有价值见解,并有助于做出明智决策。 异常检测是识别数据中不符合预期行为模式过程。在时间序列数据上下文中,异常可以表示偏离正常模式重大事件或异常值。...在深入研究异常检测技术之前,先简单介绍时间序列数据特征。...也有周期性波动,表明季节性存在。连续收盘价之间似乎存在一些自相关性。 时间序列数据预处理 在应用异常检测技术之前,对时间序列数据进行预处理是至关重要。预处理包括处理缺失值、平滑数据和去除异常值。...如果存在缺失值,可以通过输入缺失值或删除相应时间点来处理它们。 平滑数据 对时间序列数据进行平滑处理有助于减少噪声并突出显示潜在模式。平滑时间序列数据一种常用技术是移动平均线。

    41831

    时间序列表示学习综述

    给定时间序列X,TSF预测最可能发生未来n个值(xT+1,...,xT+n)。 分类。时间序列分类(TSC)旨在将预定义标签分配给时间序列。...形式上,对于任意两个时间序列X_i和X_j,若它们属于同一簇,则相似度度量函数(X_i,X_j)远大于(X_i,X_i)。 分割。时间序列分割(TSS)是一种为时间序列序列分配标签方法。...然而,由于时间序列数据集中标签不足,因此监督学习无法引起普遍表示学习社区太多关注。此外,训练模型可泛化性也有限。...自监督表征学习在时间序列分析中降低了标签成本,所讨论方法展示了不同策略在捕捉时间依赖和空间关系方面的优势,突显了自监督学习在提高效率和鲁棒性方面的多功能性。...6 实验设计 本节介绍了用于比较时间序列通用表示学习方法典型实验设计,包括评估每个模型以确定最佳模型方法,以及将表示空间映射到标签空间函数。

    24810

    时间序列轨迹聚类

    时间序列聚类在时间序列分析中是非常重要课题,在很多真实工业场景中非常有用,如潜在客户发掘,异常检测,用户画像构建等。...基于以上假设,我们直接把时间序列数值作为时间序列表示,用对应时间点之间欧式距离之和作为距离,那么我们就得到了最简单定义。...比如以下两对时间序列:第一组是十个时间点、均值为0方差为1时间序列,第二组是十个时间点、均值为0方差为0.6时间序列,其中一个时间序列包含一个离群点。...上述定义都是假设在时间序列对齐情况下,也即我们假设时间序列长度是相等,而且我们期望不同时间序列上每个相同时间物理含义是一致,表示是同一个目标(值)。...而我们拿到时间序列通常是利用滑窗从一个完整时间序列上截取下来,在实际应用中,我们可以利用不仅仅去对比两个滑窗下时间序列距离,而可以允许滑窗错位对比,从而解决时间序列异位问题。

    2K10

    用于时间序列预测Python环境

    在这篇文章中,您将了解到Python环境下时间序列预测。 阅读这篇文章后,您会掌握: 三个对时间序列预测至关重要标准Python库。 如何安装和设置开发Python和SciPy环境。...有三个高级SciPy库,它们为Python中时间序列预测提供了关键特性。 他们分别是pandas,statsmodels和用于数据处理 scikit-learn ,时间序列建模和机器学习。...与pandas时间序列预测相关主要功能包括: 用于表示单变量时间序列_Series_对象。 显式处理数据和日期时间范围内日期时间索引。 变换,如移位、滞后和填充。...与时间序列预测相关statsmodels主要特点包括: 平稳性统计测试,例如增强型Dickey-Fuller单位根检验。 时间序列分析图如自相关函数(ACF)和部分自相关函数(PACF)。...您可能需要查阅针对您平台文档。 概要 这篇文章,带您大致了解了Python环境下时间序列预测。

    2.9K80

    Power BI 时间序列预测——ARIMA

    ARIMA 跟指数平滑法(ETS)同样经典另一个时间序列预测模型是ARIMA(Autoregressive Integrated Moving Average Model,整合移动平均自回归模型)。...ARIMA完整模型如下方程所示: 其中, 是时间序列yN阶差分,当N=1时,即为当期值-上期值,如下图所示: 为了方便显示,完整方程可改写为如下所示: 三个重要参数: p:代表预测模型中采用时序数据本身滞后数...此时,由于d为0,所以无需差分,ARIMA方程变为: 即为一个白噪声(White Noise)序列。即序列任何两个时间值都不相关,但序列期望值(均值)为0。无法进行有效预测。...因为大多数时间序列是非平稳(即有升降趋势或周期性),但当期和上期差值(即一阶差分)可能使得序列平稳(不随时间改变),易于预测。当然,往往一阶差分不够,还需要进行二阶差分(此时d=2)。...如季度性时间序列,则m=4;月度性时间序列,则m=1。

    2.5K20

    测试时间序列40个问题

    时间序列分析是统计学一个分支,广泛应用于计量经济学和运筹学等领域。这篇技能测试文章是为了测试你对时间序列概念了解程度。 共有1094人报名参加了这次技能测试。...2) 以下哪项不是时间序列模型示例?...A) 不同时间观测到不同序列上多个点之间线性相关性 B) 不同时间观测到同一序列上两点之间二次相关性 C) 同时观测到不同序列两点之间线性关系 D) 在不同时间观测到同一序列上两点之间线性关系...A) 平均值是恒定,不依赖于时间 B) 自协方差函数仅通过其差|s-t|依赖于s和t(其中t和s为时刻) C) 所考虑时间序列是一个有限方差过程 D) 时间序列是高斯 解决方案:(D) 高斯时间序列意味着平稳性是严平稳性...平均值是恒定,不依赖于时间 自协方差函数仅取决于s和t差| s-t |。(其中t和s是时间点) 考虑时间序列是一个有限方差过程 这些条件是数学上表示要用于分析和预测时间序列必要先决条件。

    1.5K20

    时间序列分析中自相关

    什么是自相关以及为什么它在时间序列分析中是有用。 在时间序列分析中,我们经常通过对过去理解来预测未来。为了使这个过程成功,我们必须彻底了解我们时间序列,找到这个时间序列中包含信息。...对于时间序列,自相关是该时间序列在两个不同时间点上相关性(也称为滞后)。也就是说我们是在用时间序列自身某个滞后版本来预测它。...数学上讲自相关计算方法为: 其中N是时间序列y长度,k是时间序列特定滞后。当计算r_1时,我们计算y_t和y_{t-1}之间相关性。 y_t和y_t之间自相关性是1,因为它们是相同。...因此,我们需要进行一些差分以使时间序列平稳。...因此在对该数据建立预测模型时,下个月预测可能只考虑前一个值~15个,因为它们具有统计学意义。 在值0处滞后与1完全相关,因为我们将时间序列与它自身副本相关联。

    1.1K20
    领券