近日,帆软举办了第四届FineBI数据分析大赛,让来自各个领域的业务人员,用帆软的BI产品来进行自助式数据分析,产生了大量的优秀分析案例。
下面来介绍一下基于Python的数据分析,主要介绍数据分析的概念、数据分析流程、Python优势、常用模块的用途以及使用 Python进行数据分析的学习方法及步骤;
转自:https://www.toutiao.com/i6873267140791632388/
数据分析在各行各业的应用 计算机、金融、财务会计、医药专业、艺术专业、语言类专业、法律专业、设计、电商 相信很多人都听到过不少次数据分析这一词,而数据分析这个次近几年来随着互联网的快速发展,成为商业世界中的流行语 很多具有远见卓识的公司很早就已经开始去“智能地使用数据”,来收集用户行为画像,对业务进行风险分析或者是对企业进行更有效地管理 一般来说越是大型的,数据丰富的公司,尤其是那些会有严格监管的大型公司,多年来一直从事以数据为主导的决策 企业为更好地了解其客户而进行的数据分析先驱-随后的数据分析被用于开展针对性强的目标有影响力的营销活动,来引导企业进行更快速的成长, 下面开门见山带大家看一下数据分析岗位所在的典型行业
一个数据分析流程,应该包括以下几个方面,建议收藏此图仔细阅读。完整的数据分析流程:
聚信立数据科学家甘建铃:孙子兵法在数据分析中的应用
韩光祖,腾讯云 TVP,现任上海腾展长融董事 & CTO。美国南加州大学企管硕士,曾任富邦华一銀行总部渠道与数字银行部副总裁及总部信息科技部副总裁、纬创集团 WistronITS 全球总部首席信息官 、企业资安主委、子辰国际开发(央企港银博源基金)技术顾问兼任 COO (投资)、新蛋网全球科技及委外服务总监、外资银行科技一级部主管 12 年。有 20 余年企业 IT/MIS/IS 营运经验,有 DD、私募债权融资、工业地产交易与股权转让、跨境金融财务、科技发展与创新经验。并且也拥有多年大型电商行业从业及银行核心系统更换经验, 熟悉信息化、数实化、商业系统分析、云架构及云迁移、电信公有云建置及开发、整合; 并熟悉研发、产品、售前、交付、售后等业务;甚至包括专业的服务解决方案、规划、实施、建立大型资料分析、资料采集及深度学习图像物件侦测的AI工艺辅助决策和熟悉企业整体战略规划与实施。
Minitab是一款广泛应用于数据分析领域的软件,它在数据处理、统计分析、图表制作等方面都有着独特的功能,下面就让我们通过实际案例来了解Minitab的独特之处。
人效的数据分析是所有模块数据分析里最有价值也是最难的一部分,在年底的时候很多同学开始做人效的数据分析,但是不知道如何做分析,今天我们就通过一个案例给大家梳理下人效数据分析的思路。
“大数据”时代到来了吗? 潮流是一股可笑又可敬的力量:今天,如果打开任何媒体,要是不提“大数据”,恐怕都不好意思出版。这股潮流,铺天盖地,连国家领导人都不例外。问题在于:为什么人人言必称大数据? 数据的价值,随着数据量的几何级数增长,已经不再能够通过传统的图表得以显现,这正是为什么商业智能还没来得及流行,便已被“数据分析”挤下舞台。因为,价值隐藏在数据中,需要数据分析方可释放这些价值。数据分析能力的高低,决定了价值发现过程的好坏与成败。可以说,没有数据分析,“大数据”只是一堆IT库存,成本
智能工厂牵涉到的范围非常广泛,除如智能机器人、集成产品生产模拟、添加性制造/3D打印等等专门技术领域外,很大程度上主要围绕在这样一个核心课题: 即如何把信息和通讯技术(Information& Communication Technology - ICT)应用于在传统的生产环境中,与运营技术(Operational Technology - OT)两化融合,从而实现智能化生产。 它涵盖了生产技术和生产过程的数字化,对机器设备的连接,数据收集、分析和应用,生产运营技术与信息技术及生产系统与业务系统的融合等方
大数据文摘作品,欢迎个人转发朋友圈,自媒体、媒体、机构转载务必申请授权,后台留言“机构名称+文章标题+转载”,申请过授权的不必再次申请,只要按约定转载即可,但文末需放置大数据文摘二维码。 素材来自:《大数据供应链》 中国人民大学出版社 【成功的诺基山】 2003年,钢铁制造建筑领军企业诺基山(Rocky Mountain) 钢铁公司迫于价格压力不得不关闭其钢管工厂。2005年,由于石油成本提高,潜在的客户、石油钻井公司纷纷涌现,公司需要重新制定策略。需不需要重开钢管工厂?如果要,什么时候重开?是马上开始生产
本文主要介绍了Origin软件的使用方法、功能和在数据分析和绘图方面的应用。通过详细的实例分析和解释,展示了Origin软件在科学研究和工业生产等领域中的优势和价值,并总结了使用Origin软件时需要注意的一些技巧和注意事项。
根据IDC 监测,人类产生的数据量正在呈指数级增长,大约每两年翻一番,这个速度在2020 年之前会继续保持下去。这意味着人类在最近两年产生的数据量相当于之前产生的全部数据量。 一、大数据应用现状 1、数据量在不断增加,且数据结构不断复杂。 根据IDC 监测,人类产生的数据量正在呈指数级增长,大约每两年翻一番,这个速度在2020 年之前会继续保持下去。这意味着人类在最近两年产生的数据量相当于之前产生的全部数据量。于此同时,大量新数据源的出现则导致了非结构化、半结构化数据爆发式的增长。 这些由我们创造的信息背后
数据分析师有理由爱Sqlserver之一-好用的插件工具推荐 数据分析师有理由爱Sqlserver之二-像使用Excel一般地使用SqlServer
智能制造与工业4.0概念是相近的。智能制造涉及的内容很多,今天我们只说说 MES 与目前已经在应用的工业物联网和工业数据分析 的关系
一个完整的数据分析流程,应该包括以下几个方面,建议收藏此图仔细阅读。完整的数据分析流程:1、业务建模。2、经验分析。3、数据准备。4、数据处理。5、数据分析与展现。6、专业报告。7、持续验证与跟踪。 (注:图保存下来,查看更清晰) 作为数据分析师,无论最初的职业定位方向是技术还是业务,最终发到一定阶段后都会承担数据管理的角色。因此,一个具有较高层次的数据分析师需要具备完整的知识结构。 1. 数据采集 了解数据采集的意义在于真正了解数据的原始面貌,包括数据产生的时间、条件、格式、内容、长度、限制条件等。这会
大数据经过多年的潜心发展,在当今可以说是进入到了一个快速发展期。各种围绕大数据的应用开发也迅速火热起来了。政务大数据解决方案、企业级大数据解决方案、智慧城市停车大数据解决方案等已经开始被应用。5月份一条很有意思的娱乐新闻——警方在某歌手的演唱会上抓捕了好几个被网上追逃的人。这同样是大数据技术的应用······
一个完整的数据分析流程,应该包括以下几个方面,建议收藏此图仔细阅读。完整的数据分析流程: 1、业务建模。 2、经验分析。 3、数据准备。 4、数据处理。 5、数据分析与展现。 6、专业报告。 7、持续
本项目案例由帆软投递并参与“数据猿年度金猿策划活动——2023大数据产业年度创新服务企业榜单/奖项”评选。
大数据是近几年非常热门的一个概念。到底什么叫做大数据呢?简单而言,就是具备4V属性的数据:
(1)5W2H又称为七问分析法,是以五个开头的英文单词和两个H开头的英文单词进行提问,即为什么(Why)、什么事(What)、谁(Who)、什么时候(When)、什么地方(Where)、如何做(How)、什么价格(How much)
一个完整的数据分析流程,应该包括以下几个方面,建议收藏此图仔细阅读。完整的数据分析流程:1、业务建模。2、经验分析。3、数据准备。4、数据处理。5、数据分析与展现。6、专业报告。7、持续验证与跟踪。
举一个典型的例子:男士到超市买尿布会顺带买一些啤酒,通过大数据分析出的结果促使超市在尿布的货架附近放一些啤酒,从而增大销量,买尿布与买啤酒之间没有因果关系,但是存在着某种相关关系。
1. 数据分析多层模型介绍 这个金字塔图像是数据分析的多层模型,从下往上一共有六层: 底下第一层称为Data Sources 元数据层。 比如说在生产线上,在生产的数据库里面,各种各样的数据,可能是银
导读:一个完整的数据分析流程,应该包括以下几个方面,建议收藏此图仔细阅读。完整的数据分析流程:1、业务建模。2、经验分析。3、数据准备。4、数据处理。5、数据分析与展现。6、专业报告。7、持续验证与跟
数据分析能力,未来会越来越重要。之前推送过很多篇相关文章,基于此再扼要总结,广义上数据分析的学习路线,此处数据分析我延伸到建模部分,只为了从宏观上更清楚的认识,数据分析和数据建模是如何从零到上线,并应用于生产实践与指导中的。
作为数据分析师,无论最初的职业定位方向是技术还是业务,最终发到一定阶段后都会承担数据管理的角色。因此,一个具有较高层次的数据分析师需要具备完整的知识结构。 一、数据采集 数据采集的意义在于真正了解数据
要进行一次完整的数据分析,首先要明确数据分析思路,如从那几个方面开展数据分析,各方面都包含什么内容或指标。是分析框架,给出分析工作的宏观框架,根据框架中包含的内容,再运用具体的分析方法进行分析。
大数据催生数据分析师 薪酬比同等级职位高20% 随着大数据在国内的发展,大数据相关人才却出现了供不应求的状况,大数据分析师更是被媒体称为“未来最具发展潜力的职业之一”。大数据分析师是做什么的?阿里巴巴集团研究员薛贵荣就曾表示,“大数据分析师就是一群玩数据的人,玩出数据的商业价值,让数据变成生产力。”而大数据和传统数据的最大区别在于,它是在线的、实时的、规模海量且形式不规整,无章法可循,因此“会玩”这些数据的人就很重要。有媒体报道,在美国,大数据分析师平均每年薪酬高达17.5万美元,而国内顶尖互联
一个完整的数据分析流程,应该包括以下几个方面,建议收藏此图仔细阅读。完整的数据分析流程:1、业务建模。2、经验分析。3、数据准备。4、数据处理。5、数据分析与展现。6、专业报告。7、持续验证与跟踪。 作为数据分析师,无论最初的职业定位方向是技术还是业务,最终发到一定阶段后都会承担数据管理的角色。因此,一个具有较高层次的数据分析师需要具备完整的知识结构。 1. 数据采集 了解数据采集的意义在于真正了解数据的原始面貌,包括数据产生的时间、条件、格式、内容、长度、限制条件等。这会帮助数据分析师更有针对
随着制造业的发展和进步,焊接自动化成为提高生产效率和产品质量的重要手段之一。本文将介绍焊接自动化中的关键技术,包括机器人技术、传感器技术、视觉识别技术以及数据分析技术。这些技术的应用使得焊接过程更加精确、高效,并减少了人为因素对焊接质量的影响。
比如说在生产线上,在生产的数据库里面,各种各样的数据,可能是银行的业务数据,也可能是电信运营商在交换机里面采集下来的数据等等,然后这些生产的数据通过ETL,是英文 Extract-Transform-Load 的缩写,用来描述将数据从来源端经过抽取(extract)、转换(transform)、加载(load)至目的端的过程,通过这个过程,我们可以把需要的数据放到数据仓库里面,那这个数据仓库就是多层模型中的第二层。
作为数据分析师,无论最初的职业定位方向是技术还是业务,最终发到一定阶段后都会承担数据管理的角色。因此,一个具有较高层次的数据分析师需要具备完整的知识结构。 1. 数据采集 了解数据采集的意义在于真正了解数据的原始面貌,包括数据产生的时间、条件、格式、内容、长度、限制条件等。这会帮助数据分析师更有针对性的控制数据生产和采集过程,避免由于违反数据采集规则导致的数据问题;同时,对数据采集逻辑的认识增加了数据分析师对数据的理解程度,尤其是数据中的异常变化。比如: Omniture中的Prop变量长度只有100个字符
作为数据分析师,无论最初的职业定位方向是技术还是业务,最终发到一定阶段后都会承担数据管理的角色。因此,一个具有较高层次的数据分析师需要具备完整的知识结构。 1. 数据采集 了解数据采集的意义在于真正了解数据的原始面貌,包括数据产生的时间、条件、格式、内容、长度、限制条件等。这会帮助数据分析师更有针对性的控制数据生产和采集过程,避免由于违反数据采集规则导致的数据问题;同时,对数据采集逻辑的认识增加了数据分析师对数据的理解程度,尤其是数据中的异常变化。比如: Omniture中的Prop变量长度只有100个字
作为数据分析师,无论最初的职业定位方向是技术还是业务,最终发到一定阶段后都会承担数据管理的角色。因此,一个具有较高层次的数据分析师需要具备完整的知识结构。 1、 数据采集 了解数据采集的意义在于真正了解数据的原始面貌,包括数据产生的时间、条件、格式、内容、长度、限制条件等。这会帮助数据分析师更有针对性的控制数据生产和采集过程,避免由于违反数据采集规则导致的数据问题;同时,对数据采集逻辑的认识增加了数据分析师对数据的理解程度,尤其是数据中的异常变化。比如:Omniture中的Prop变量长度只有100个字符
但对于企业而言,如何以低耗能、低成本、高效率的方式加快制造业转型升级的步伐,仍然是众多制造企业需要解决的问题。
自“智能制造2025”、工业互联网等提出以来,我国制造业数字化水平不断提高,开辟了一条以新一代信息技术与制造业融合发展的路径,推动制造业数字化、网络化、智能化发展。
麦肯锡在 2012 年这样描述“大数据”时代的到来:“数据,已经渗透到当今每一个行业和业务职能领域,成为重要的生产因素。人们对于海量数据的挖掘和运用,预示着新一波生产率增长和消费者盈余浪潮的到来”。 这一论断,如今已经成为现实。例如,购物时,消费者会看到来自平台的个性化推荐;训练场上,运动员利用数据来监测和分析动作,不断改进运动技术和战术;工厂里,工程人员通过对生产数据的采集、分析,不断优化生产工艺及流程……在许多行业,数据已经成为重要的生产要素,甚至在某些行业里,数据成为企业最核心的生产要素。 与此同时
数据分析流程结构图 (后台回复“lc”,下载高清原图) 1.数据采集 了解数据采集的意义在于真正了解数据的原始面貌,包括数据产生的时间、条件、格式、内容、长度、限制条件等。这会帮助数据分析师更有针对性的控制数据生产和采集过程,避免由于违反数据采集规则导致的数据问题;同时,对数据采集逻辑的认识增加了数据分析师对数据的理解程度,尤其是数据中的异常变化。比如:Omniture中的Prop变量长度只有100个字符,在数据采集部署过程中就不能把含有大量中文描述的文字赋值给Prop变量(超过的字符会被截断)。
原作者 Maruti Techlabs 编译 CDA 编译团队 本文为 CDA 数据分析师原创作品,转载需授权 大数据每天都在发展,并成为科技界的热门词汇。我们周围的许多人都在谈论它,但他们知道它的真正含义吗? 大数据只不过是非结构化数据的集合。这些数据不是以特定的格式,因为数据集通常是巨大的,有时是数十兆字节,有时甚至超过了PB级别。大数据这个术语出现之前用的是大型数据库(VLDB),由数据库管理系统(DBMS)进行管理。 大量与商业有关的数据能够有效增加公司的销售与利润。为了做到这一点,我们需要利用大
在大数据和人工智能行业,有众多与数据相关的岗位,名目繁多:数据分析师、数据产品经理、数据挖掘工程师、大数据工程师、数据开发工程师、机器学习工程师、算法工程师、NLP算法工程师、数据科学家等等。很多应届生或准备转行的朋友面对如此多的岗位名称,都会傻傻分不清楚。本文将这些数据相关的职位分为三类:数据分析师、大数据工程师和算法工程师,并从工作内容和技能要求来做一下分析,帮助新入行朋友选择适合自己的岗位。这里我暂且不谈最顶级的数据科学家,这部分人均为名校博士,全世界可能只有几千个,他们可以轻轻松松年薪百万,是整个食物链的最顶层。他们不需要找工作,都是工作在找他们。
像领导驾驶舱等各种图形化的分析图表,第一眼看上去就是非常美观,报表设计好看、数据情况直观清晰,非常适合做企业实力的展示。但是BI工具真的只是一个简单的报表展示工具吗?当然不是,除了让数据更好看,BI工具还可以做到以下几点。
很多同学很疑惑:为什么我做的数据分析和别人讲的差别那么大???有一个重要的原因,是数据分析的问题场景不一样。不同的问题场景,意味着数据指标,分析逻辑,输出内容都不一样,有些场景差异之大,以至于不熟悉的人完全上手不了。 那到底有哪些场景呢?这里简单盘点一下。 首先,toB和toC业务是完全不同两大场景。toC业务面对的是个人的衣食住行的需求,离我们的生活很近。经常我们把自己当做消费者思考一下,就能理解toC业务是做什么的。而toB业务则是服务企业生产经营,很多同学不能直观理解。 更难的点是:toB类业务数据
最近看了 Milter 的《算法工程师究竟需要哪些工程能力》这篇文章,有所感想,因此也写一篇关于算法工程师的技术能力的问题,和大家分享一下居士关于算法工程师的技术能力的观点。
1、了解数据采集的意义在于真正了解数据的原始面貌,包括数据产生的时间、条件、格式、内容、长度、限制条件等。同时,对数据采集逻辑的认识增加了数据分析师对数据的理解程度,尤其是数据中的异常变化。很大程度上可以避免"垃圾数据进导致垃圾数据出"的问题。
领取专属 10元无门槛券
手把手带您无忧上云