首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Python—关于Pandas的缺失值问题(国内唯一)

    是否有明显的缺失数据(熊猫可以检测到的值)? 是否还有其他类型的丢失数据不太明显(无法通过Pandas轻松检测到)? 了说明我的意思,让我们开始研究示例。 我们要使用的数据是非常小的房地产数据集。...也许我喜欢使用“n / a”,但是其他人喜欢使用“ na”。 检测这些各种格式的一种简单方法是将它们放在列表中。然后,当我们导入数据时,Pandas会立即识别出它们。这是我们将如何执行此操作的示例。...让我们一些代码进行确认。...代码的另一个重要部分是.loc方法。这是用于修改现有条目的首选Pandas方法。有关此的更多信息,请查看Pandas文档。 现在,我们已经研究了检测缺失值的不同方法,下面将概述和替换它们。...# 一个数字替换缺失的值 df['ST_NUM'].fillna(125, inplace=True) 如果进行基于位置的插补。

    3.2K40

    一看就会的Pandas文本数据处理

    填充字符为'-' 0 ---------A 1 ---------B 2 ------Aaba 3 ------Baca 4 5 ------...方法split()返回的是一个列表 我们可以使用get 或 []符号访问拆分列表中的元素 我们还可以将拆分后的列表展开,需要使用参数expand 同样,我们可以限制分隔的次数,默认是从左开始(rsplit...文本拼接 文本拼接是指将多个文本连接在一起,基于str.cat()方法 比如,将一个序列的内容进行拼接,默认情况下会忽略缺失值,我们亦可指定缺失值 连接一个序列和另一个等长的列表,默认情况下如果有缺失值...,则会导致结果中也有缺失值,不过可以通过指定缺失值na_rep的情况进行处理 连接一个序列和另一个等长的数组(索引一致) 索引对齐 在索引对齐中,我们还可以通过参数join来指定对齐形式,默认为左对齐...文本提取 我们在日常中经常遇到需要提取某序列文本中特定的字符串,这个时候采用str.extract()方法就可以很好的进行处理,它是正则表达式将文本中满足要求的数据提取出来形成单独的列。

    1.4K30

    Julia机器学习核心编程.6

    代码使用rand函数创建了一个数组,该函数接收两个值,其中第一个值是范围,“:”表示;第二个值是一个数。本例创建了一个具有6个元素的数组。 ? 前面我们讨论的数组元素的类型是相同的。...Julia中的列表解析式 通过列表推导创建数组更加容易,接下来我们就创建一个数组,并用2的幂来填充数组。 使用列表解析式创建 ? 对不住了,我报错了 ? 创建空白数组,push!函数添加元素 ?...吧一个数组放另一个数组里面 ? 这还是报错,我一会儿看看文档去 ? 是不是有MATLAB内味儿了!!!!! ? 转置一下 ? 这个转置函数可能更好一点的选择 ? 常见的操作 ?...下面的代码将使用NA值进行测试。 NA值测试 以下代码简单测试了NA的性质。...NA并不总是影响应用于特定数据集的函数。因此,不涉及NA值或不受其影响的方法可以应用于数据集;如果涉及NA值,那么DataArray将给出NA作为结果。

    2.3K20

    pandas’_pandas常用方法

    NA/NaN值 参数 value : scalar, dict, Series, or DataFrame 标量值或字典对象用于填充缺失值 要填充的值,该值不能是列表 method :...{‘backfill’, ‘bfill’, ‘pad’, ‘ffill’, None}, default None pad/ffill:前一个非缺失值去填充该缺失值 backfill/bfill:...下一个非缺失值填充该缺失值 None:指定一个值去替换缺失值(缺省默认这种方式) axis : {0 or ‘index’} 需要填充的轴 inplace : bool, default...NA/NaN值 参数 value : scalar, dict, Series, or DataFrame 标量值或字典对象用于填充缺失值 要填充的值,该值不能是列表 method :...下一个非缺失值填充该缺失值 None:指定一个值去替换缺失值(缺省默认这种方式) axis :{0 or ‘index’, 1 or ‘columns’} 需要填充的轴 inplace

    95110

    python 科学计算的基石 numpy(一)

    使用 np.zeros() 只需提供 shape 参数,也是第一个位置参数,就可以创建指定 shape 的多维数组,并将数组所有元素填充为 0 。...0], [0, 0, 0]], dtype=uint8) 3.1.3 使用 np.ones() 创建 np.ones() 和 np.zeros 除了填充的不是 0,而是 1,其他都一样。...3.2.2 普通多维列表方式 na[1][2] 0.7547734386512726 3.3 统计运算 3.3.1 求最大值 v = np.random.normal(10, 1, 10000)...对,从结构和使用方式上,的确 numpy 多维数组和列表有诸多相似的地方。在大数据分析,机器学习上尤其是深度学习,等需要对大量数据进行计算的场景,它的性能将远超普通列表。...为什么会有这么大的差距,原因在于,numpy 底层运算是 C 语言实现的,而 C 语言的性能相比于 python 是不言而喻的。

    95810

    手把手教你pandas处理缺失值

    处理缺失值的相关函数列表如下: dropna:根据每个标签的值是否是缺失数据来筛选轴标签,并根据允许丢失的数据量来确定阈值 fillna:某些值填充缺失的数据或使用插值方法(如“ffill”或“bfill...你可以thresh参数来表示: In: df = pd.DataFrame(np.random.randn(7, 3)) df.iloc[:4, 1] = NA df.iloc[:2, 2] =...例如,你可以将Series的平均值或中位数用于填充缺失值: In: data = pd.Series([1., NA, 3.5, NA, 7]) data.fillna(data.mean()) Out...value:标量值或字典型对象用于填充缺失值 method:插值方法,如果没有其他参数,默认是'ffill' axis:需要填充的轴,默认axis=0 inplace:修改被调用的对象,而不是生成一个备份...limit:用于前向或后向填充时最大的填充范围关于作者:韦斯·麦金尼(Wes McKinney)是流行的Python开源数据分析库pandas的创始人。

    2.8K10

    GSEA软件使用方法简介

    基因个数,第二个数值代表样本个数,第三行是表达量矩阵的表头,前两列固定是NAME和Description, NAME是基因ID或者探针ID,必须保证唯一,Description表示描述信息,如果没有,可以na...填充,后面每列对应一个样本。...每一行代表一个基因集合,第一列为基因集合的名字,必须唯一,第二列为描述信息,如果没有就用na填充,后面的列为该集合下的基因,每列之间\t分隔。gmt格式示意如下 ?...和gmt相反,gmt中每一列代表一个基因集合,第一行为基因集合的名字,必须唯一,第二行为描述信息,如果没有就用na填充,其他行为该集合下的基因。...第一列为探针ID, 表头为Probe_Set_ID,第二列为探针对应的基因,表头为Gene Symbol, 第三列为探针描述信息,没有就用na填充

    2.7K10

    R语言数据结构(二)矩阵

    R语言中的常用数据结构,包括向量、矩阵、数组、列表和数据框。关于数据结构的使用,我们将分四篇文章分别介绍每种数据结构的操作方法和代码示例。...矩阵有两个维度,分别表示行数和列数,可以dim()函数来获取。矩阵应用举例:创建矩阵创建矩阵的一种常用方法是使用matrix()函数,它可以将一个向量或多个向量组合成一个矩阵。...byrow:表示是否按行填充矩阵,如果为TRUE,则按行填充,如果为FALSE,则按列填充,默认为FALSE。...例如:# 使用一个向量创建一个3行2列的矩阵,按列填充m1 <- matrix(data = c(1, 2, 3, 4, 5, 6), nrow = 3, ncol = 2)m1# [,1]...[,2]# [1,] 1 4# [2,] 2 5# [3,] 3 6# 使用两个向量创建一个2行3列的矩阵,按行填充m2 <- matrix(data = c(c(7

    34320

    基本操作包的移动向量矩阵数组数据框列表因子NA字符串

    ) which(t==7)# 元素7所在位置 which(t>5) t[which (t>5)]#返回具体值 3.1.4 将向量x赋予维度 x<-1:20 dim(x)<-c(4,5)#4行5列,按列填充...c(1,2)]#删除向量x中的1和2 x[1]<-3#把向量x中的第1个数改为3 四.矩阵(矩阵的四则运算需要行列一致) 4.1创建矩阵 m <- matrix(1:20,4,5) # 4行5列,按列填充...,遵循循环补齐原则 m <- matrix(1:20,4,5,byrow=TRUE)#按行填充 4.2 给矩阵补充行名和列名 m <- matrix(x,nrow = 4,ncol = 5,byrow...,ya=c,la=d) 7.2 列表索引 mlist[1]#输出的为列表的子集,结果仍是列表 mlist[[1]]#输出的为元素本身的数据类型 mlist[c(1,4)] mlist["ni"] mlist...$ni mlist[[5]] <- iris#添加/修改列表 注意需为双中括号 mlist[5] <- NULL#删除列表 mlist[[5]] <- NULL 八.因子 week <- factor

    17930

    R语言数据分析利器data.table包 —— 数据框结构处理精讲

    将一个R对象转化为data.table,R可以时矢量,列表,data.frame等,keep.rownames决定是否保留行名或者列表名,默认FALSE,如果TRUE,将行名存在"rn"行中,keep.rownames...showProgress = getOption("datatable.showProgress"), verbose = getOption("datatable.verbose")) x,具有相同长度的列表...,na值的表示,默认""; dec,小数点的表示,默认"...表示以NA返回不匹配的值 with 默认是TRUE,列名能够当作变量使用,即x相当于DT$"x",当是FALSE时,列名仅仅作为字符串,可以传统data.frame方法并且返回data.table,x...,+Inf(或者TRUE)用上一行的值填充,-Inf下一行的值填充,输入某数字时,表示能够填充的距离,near最近的行填充 rollends 填充首尾不匹配的行,TRUE填充,FALSE不填充,与

    5.9K20

    pandas读取表格后的常用数据处理操作

    hotel.xlsx", header=None, sep=',', nrows=10) print(tabledata) 2、对读取的数据重新定义列名 相关参数简介: names:用于结果的列名列表...#QNAN', '#N/A N/A','#N/A', 'N/A', 'NA', '#NA', 'NULL', 'NaN', '-NaN', 'nan', '-nan', '', 转换为NaN,且na_values...#QNAN', '#N/A N/A','#N/A', 'N/A', 'NA', '#NA', 'NULL', 'NaN', '-NaN', 'nan', '-nan', '' keep_default_na...axis:确定填充维度,从行开始或是从列开始 limit:确定填充的个数,int型 通常limit参数配合axis可以用于替换数量方向的控制 我们这里根据需求,最简单的就是将需要修改的这一列取出来进行修改...tableline = tabledata['类型'].fillna(value='其他') tabledata['类型'] = tableline print(tabledata) 6、修改某一列,平均值代替缺失值

    2.4K00
    领券