首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    携程如何从海量数据中构建精准用户画像?

    用户画像作为“大数据”的核心组成部分,在众多互联网公司中一直有其独特的地位。 作为国内旅游OTA的领头羊,携程也有着完善的用户画像平台体系。目前用户画像广泛用于个性化推荐,猜你喜欢等;针对旅游市场,携程更将其应用于“房型排序”“机票排序”“客服投诉”等诸多特色领域。本文将从目的,架构、组成等几方面,带你了解携程在该领域的实践。 1.携程为什么做用户画像 首先,先分享一下携程用户画像的初衷。一般来说,推荐算法基于两个原理“根据人的喜好推荐对应的产品”“推荐和目标客人特征相似客人喜好的产品”。而这两条都离不开用

    010

    大数据变现十日谈之六:用户画像

    “用户画像”这个说法现在是在数据分析和数据挖掘领域是很流行的。 这个说法比较形象,它是指我们在数据库或数据仓库里使用用户信息的记录,对这些信息逐渐丰富以后完成对用户的描述。整个描述的过程就像给用户画像一样,因为我们平时在绘画中说的画肖像画一样,一笔一笔照着模特画,最后完成对模特样子的描述。 我们希望对用户做“画像”的目的也是比较明确的,就是我们希望通过某些手段对用户做甄别,把他们分成彼此相同或不同的人群或个体,进而区别化提供服务和进行观察分析——这通常是做用户画像的核心目的所在。 在数据库或者数据仓库里怎

    05

    用户画像 | 标签数据存储之Hive真实应用

    小伙伴们大家好呀,趁着年假的几天时间,我写了一篇 Elacticsearch 从0到1的“长篇大作”,现在还在排版,相信很快就会与大家见面了!关于系统学习用户画像,之前已经分享过2篇文章了,分别是《超硬核 | 一文带你入门用户画像》和《用户画像 | 开发性能调优》,收到的读者反馈还不错!本期文章,我借《用户画像方法论》一书,为大家分享在用户画像系统搭建的过程中,数据存储技术基于不同场景的使用。考虑到 篇幅的文章,我会用4篇文章分别介绍使用 Hive、MySQL、HBase、Elasticsearch 存储画像相关数据的应用场景及对应的解决方案。本期介绍的是 Hive,如果对您有所帮助,记得三连支持一下!

    02
    领券