什么是零拷贝 维基上是这么描述零拷贝的:零拷贝描述的是CPU不执行拷贝数据从一个存储区域到另一个存储区域的任务,这通常用于通过网络传输一个文件时以减少CPU周期和内存带宽。 零拷贝给我们带来的好处: 减少甚至完全避免不必要的CPU拷贝,从而让CPU解脱出来去执行其他的任务 减少内存带宽的占用 通常零拷贝技术还能够减少用户空间和操作系统内核空间之间的上下文切换 Linux系统的“用户空间”和“内核空间” 从Linux系统上看,除了引导系统的BIN区,整个内存空间主要被分成两个部分:内核空间(Ke
本文以 32 位系统为例介绍内核空间(kernel space)和用户空间(user space)。
大白话解释,零拷贝就是没有把数据从一个存储区域拷贝到另一个存储区域。但是没有数据的复制,怎么可能实现数据的传输呢?其实我们在java NIO、netty、kafka遇到的零拷贝,并不是不复制数据,而是减少不必要的数据拷贝次数,从而提升代码性能
操作系统的存储空间包含硬盘和内存,而内存又分成用户空间和内核空间。以从文件服务器下载文件为例,服务器需要将硬盘中的数据通过网络通信发送给客户端,大致流程如下:
linux驱动程序一般工作在内核空间,但也可以工作在用户空间。下面我们将详细解析,什么是内核空间,什么是用户空间,以及如何判断他们。 Linux简化了分段机制,使得虚拟地址与线性地址总是一致,因此,Linux的虚拟地址空间也为0~4G。Linux内核将这4G字节的空间分为两部分。将最高的1G字节(从虚拟地址0xC0000000到0xFFFFFFFF),供内核使用,称为“内核空间”。而将较低的3G字节(从虚拟地址 0x00000000到0xBFFFFFFF),供各个进程使用,称为“用户空间)。因为每个进程可以通过系统调用进入内核,因此,Linux内核由系统内的所有进程共享。于是,从具体进程的角度来看,每个进程可以拥有4G字节的虚拟空间。 Linux使用两级保护机制:0级供内核使用,3级供用户程序使用。从图中可以看出(这里无法表示图),每个进程有各自的私有用户空间(0~3G),这个空间对系统中的其他进程是不可见的。最高的1GB字节虚拟内核空间则为所有进程以及内核所共享。 内核空间中存放的是内核代码和数据,而进程的用户空间中存放的是用户程序的代码和数据。不管是内核空间还是用户空间,它们都处于虚拟空间中。 虽然内核空间占据了每个虚拟空间中的最高1GB字节,但映射到物理内存却总是从最低地址(0x00000000)开始。对内核空间来说,其地址映射是很简单的线性映射,0xC0000000就是物理地址与线性地址之间的位移量,在Linux代码中就叫做PAGE_OFFSET。 内核空间和用户空间之间如何进行通讯? 内核空间和用户空间一般通过系统调用进行通信。 如何判断一个驱动是用户模式驱动还是内核模式驱动? 判断的标准是什么? 用户空间模式的驱动一般通过系统调用来完成对硬件的访问,如通过系统调用将驱动的io空间映射到用户空间等。因此,主要的判断依据就是系统调用。 内核空间和用户空间上不同太多了,说不完,比如用户态的链表和内核链表不一样;用户态用printf,内核态用printk;用户态每个应用程序空间是虚拟的,相对独立的,内核态中却不是独立的,所以编程要非常小心。等等。 还有用户态和内核态程序通讯的方法很多,不单单是系统调用,实际上系统调用是个不好的选择,因为需要系统调用号,这个需要统一分配。 可以通过ioctl、sysfs、proc等来完成。
在Linux内核中,无论如何切换进程,内核地址空间转换到物理地址的关系是永远不变的,主要原因是内核地址空间在所有进程中是共享的。这种设计有几个关键点:
Linux系统是虚拟内存系统,虚拟内存并不是真正的物理内存,而是虚拟的连续内存地址空间。虚拟内存又分为内核空间和用户空间,内核空间是内核程序运行的地方,用户空间是用户进程代码运行的地方,只有内核才能直接访问物理内存并为用户空间映射物理内存(MMU)。内核会为每个进程分配独立的连续的虚拟内存空间,并且在需要的时候映射物理内存,为了完成内存映射,内核为每个进程都维护了一张页表,记录虚拟地址与物理地址的映射关系,这个页表就是存在于MMU中;用户进程访问内存的时候,通过页表把虚拟内存地址转换为物理内存地址进而访问数据;其实对于用户进程而言,虚拟内存就是内存一般的存在(当作内存看待就好)。这样的设计可以把用户程序和系统程序分开,互不影响;内核可以对所有的用户程序进行管理,比如限制内存滥用等
IPC全名为inter-Process Communication,含义为进程间通信,是指两个进程之间进行数据交换的过程。在Android和Linux中都有各自的IPC机制,这里分别来介绍下。
零拷贝机制(Zero-Copy)是在操作数据时不需要将数据从一块内存区域复制到另一块内存区域的技术,这样就避免了内存的拷贝,使得可以提高CPU的。零拷贝机制是一种操作数据的优化方案,通过避免数据在内存中拷贝达到的提高CPU性能的方案。
零拷贝技术 是编写高性能服务器的一个关键技术,在介绍 零拷贝技术 前先说明一下 用户空间 与 内核空间。
零拷贝是一种计算机操作,其中计算机的操作系统减少了在从一个应用程序到另一个或从应用程序到操作系统的数据传输过程中所需的数据复制次数。这种技术尤其在处理大量数据时非常有用,因为它可以显著减少CPU的使用率,减少上下文切换,以及减少数据在系统中的传输时间。
进程隔离概念 : 系统中的进程存在 " 进程隔离 " , 出于对进程运行的保护 , 两个进程的内存是隔离的 , 并且不允许进行直接通信 ;
Linux 已经提供了管道、消息队列、共享内存和 Socket 等 IPC 机制。那为什么 Android 还要提供 Binder 来实现 IPC 呢?主要是基于性能、稳定性和安全性几方面的原因。
eBPF 是一个基于寄存器的虚拟机,最初是为过滤网络数据包而设计的,由于最初的论文[1]是在伯克利实验室(Lawrence Berkeley National Laboratory)写的,所以被称为扩展的伯克利数据包过滤器(Extended Berkeley Packet Filter),也就是 eBPF。本文将会用通俗易懂地语言给大家解释 eBPF 为什么这么受欢迎。
有这样一个场景,有两台服务器A,B。你在A服务器上写了一个程序,这个程序功能是将服务器A的数据拷贝到服务器B上。这个功能会经历下面几步。
从 JDK1.4 开始(2002 年发布的),Java 提供了 NIO ,主要包含在 java.nio 软件包及其子包中,并被命名为 New I/O(NIO)距今已经十几年了,其实已经算不得新了。
在计算机操作系统中,所谓的I/O就是 输入(Input)和输出(Output),也可以理解为读(Read)和写(Write),针对不同的对象,I/O模式可以划分为磁盘IO模型和网络IO模型。
这种技术是出现在 IO 操作上的, IO 操作会大量消耗 CPU 的性能,为什么说 IO 操作很容易成为性能瓶颈呢,每一个的 IO 操作都会涉及到操作系统的内核空间和用户空间的转换,真正执行的 IO 操作实际上是在操作系统的内核空间进行。无论是 文件IO ,还是 网络IO ,最后都可以统一为用户空间和内核空间数据的交换。计算机中内存和 CPU 都是非常稀有的资源,应该尽可能提高这些资源的使用效率。 IO 操作经常需要与磁盘就行交互,所以 IO 操作相比于 CPU 的速度要慢好几个数量级。利用这两者之间的速度差异,就可以实现不同种类的 IO 方式,也就是俗称的 IO模型。
操作系统是软件,软件运行在内存中。运行在内存中的操作系统由两部分组成:用户空间,内核空间;
之前一直对 Binder 理解不够透彻,仅仅知道一些皮毛,所以最近抽空深入理解一下,并在这里做个小结。
后面打算系统性的介绍下NIO和Netty的内容,因为这块内容也是每个程序员必须要掌握的内容,而在介绍NIO之前我们需要先了解下一些前置的知识
在上一篇文章里我们介绍了k8s集群中flannel udp overlay网络的创建,这在里我们基于上一篇文章中的例子,来介绍在flannel udp overlay网络中pod到pod的通讯。
用户程序有用户态和内核态两种状态。用户态就是执行在用户空间中,不能直接执行系统调用。必须先切换到内核态,也就是系统调用的相关数据信息必须存储在内核空间中,然后执行系统调用。
比如一秒内有100个cpu时间片,这个cpu时间片就是cpu工作的最小单位。那么这100个cpu时间片在不同的区域和目的进行操作使用,就代表这个区域所占用的cpu时间比。也就是这里得出的cpu时间百分比。
零拷贝(Zero-copy)是指在计算机执行操作时,CPU 不需要将数据从一块内存拷贝到另一块内存,减少拷贝次数可以提高性能。
现在操作系统都是采用虚拟存储器,操作系统的核心是内核,独立于普通的应用程序,可以访问受保护的内存空间,也有访问底层硬件设备的所有权限。为了保证用户进程不能直接操作内核(kernel),保证内核的安全,操作系统将虚拟内存划分为两部分,一部分为内核空间,一部分为用户空间。对于32位操作系统,它的寻址空间(虚拟存储空间)为4G(2的32次方),linux操作系统中将最高的1G字节(从虚拟地址0xC0000000到0xFFFFFFFF)供内核使用,称为内核空间,而将较低的3G字节(从虚拟地址0x00000000到0xBFFFFFFF)供各个用户进程使用,称为用户空间。
最近一位3年工作经验的小伙伴去某厂面试,被问到这样一个问题,说:”请你简单说一下Kafka的零拷贝原理“。然后,这位小伙伴突然愣住了,什么是零拷贝,零拷贝跟Kafka有关系吗?
程序如果要被CPU执行,就得编译成CPU可以执行的指令,一大堆的程序就变成了一堆的指令。
主要是驱动设备的初始化(binder_init),打开 (binder_open),映射(binder_mmap),数据操作(binder_ioctl)。
BIO(Blocking IO) 又称同步阻塞IO,一个客户端由一个线程来进行处理
学习 Linux 时,经常可以看到两个词:User space(用户空间)和 Kernel space(内核空间)。
1. 四种理论的I/O模型 1) 调用者(服务进程): 阻塞: 进程发起I/O调用,如果调用为完成,进程被挂起休眠,不能再执行其他功能 非阻塞:进程发起I/O调用,被调用的函数完成之前,依然可以执行其他功能 2) 被调用函数或过程(系统调用I/O读写操作) 同步: 函数或功能被进程调用时,不立即返回值,直到此调用完成 异步: 函数或功能被进程调用时,不能立即完成则返回未完成状态,完成后通知调用进程 3)四中理论模型
在介绍零拷贝的IO模式之前,我们先简单了解下传统的IO模式是怎么样的?
本文将介绍linux中的五种IO模型,同时也会介绍阻塞/非阻塞与同步/异步的区别。
mmap是Linux中常用的系统调用API,用途广泛,Android中也有不少地方用到,比如匿名共享内存,Binder机制等。本文简单记录下Android中mmap调用流程及原理。mmap函数原型如下:
我们知道,linux系统中用户空间和内核空间是隔离的,用户空间程序不能随意的访问内核空间数据,只能通过中断或者异常的方式进入内核态,一般情况下,我们使用copy_to_user和copy_from_user等内核api来实现用户空间和内核空间的数据拷贝,但是像显存这样的设备如果也采用这样的方式就显的效率非常底下,因为用户经常需要在屏幕上进行绘制,要消除这种复制的操作就需要应用程序直接能够访问显存,但是显存被映射到内核空间,应用程序是没有访问权限的,如果显存也能同时映射到用户空间那就不需要拷贝操作了,于是字符设备中提供了mmap接口,可以将内核空间映射的那块物理内存再次映射到用户空间,这样用户空间就可以直接访问不需要任何拷贝操作,这就是我们今天要说的0拷贝技术。
进程 B 发送消息给进程 A , 先将数据 从 进程 A 的 用户空间 缓冲区 写到 内核空间 缓冲区中 , 然后将数据从 内核空间 缓冲区 写到 进程 A 的 用户空间 缓冲区 中 ;
CPU访问内存的速度远远高于外部设备,因此CPU是先把外部设备的数据读到内存里,然后再进行处理。 当你的程序通过CPU向外部设备发出一个读指令,数据从外部设备拷贝到内存需要一段时间,这时CPU没事干,你的程序是:
对于精通 CURD 的业务同学,内存管理好像离我们很远,但这个知识点虽然冷门(估计很多人学完根本就没机会用上)但绝对是基础中的基础。
原文链接:https://juejin.cn/post/7293175592162836514
① 用户空间 : 在 " 用户空间 " 中 , 使用 malloc 函数 申请 " 堆内存 " , 使用 free 函数 释放 " 堆内存 " ;
nginx 利用 rewrite 屏蔽IE浏览器 1. 四种理论的I/O模型 1) 调用者(服务进程): 阻塞: 进程发起I/O调用,如果调用为完成,进程被挂起休眠,不能再执行其他功能 非阻塞:进程发起I/O调用,被调用的函数完成之前,依然可以执行其他功能 2) 被调用函数或过程(系统调用I/O读写操作) 同步: 函数或功能被进程调用时,不立即返回值,直到此调用完成 异步: 函数或功能被进程调用时,不能立即完成则返回未完成
关于内核态和用户态我们在 了解操作系统的那些事儿,从这篇文章开始 这篇文章中已经详细介绍过,这里不再过多赘述。
内核是操作系统的核心组件,是计算机物理硬件与其上运行的进程之间的主要接口。内核通过提供对 CPU、内存、磁盘 I/O 和网络的访问,使多个应用程序能够共享硬件资源。 想象一台计算机由一系列层组成,最内层是硬件,最外层是运行在计算机上的软件应用程序。在这个类比中,内核位于硬件和应用程序之间,因为它不仅负责管理硬件资源和执行软件程序,还负责监督这些层之间的交互。 现代计算机将内存划分为*内核空间* 和*用户空间* 。用户空间是执行应用软件的地方,而内核空间专用于运行计算机所需的幕后工作,如内存分配和进程管理。由于内核空间和用户空间的这种分离,内核所做的工作通常对用户是不可见的。
task_struct进程描述符中包含两个跟进程地址空间相关的字段mm, active_mm,
零拷贝是老生常谈的问题啦,大厂非常喜欢问。比如Kafka为什么快,RocketMQ为什么快等,都涉及到零拷贝知识点。最近技术讨论群几个伙伴分享了阿里、虾皮的面试真题,也都涉及到零拷贝。因此本文将跟大家一起来学习零拷贝原理。
领取专属 10元无门槛券
手把手带您无忧上云