首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Pandas 查找,丢弃唯一的

前言 数据清洗很重要,本文演示如何使用 Python Pandas 来查找和丢弃 DataFrame 中唯一的,简言之,就是某的数值除空外,全都是一样的,比如:全0,全1,或者全部都是一样的字符串如...:已支付,已支付,已支付… 这些大多形同虚设,所以当数据集很多而导致人眼难以查找时,这个方法尤为好用。...上代码前先上个坑吧,数据中的空 NaN 也会被 Pandas 认为是一种 “ ”,如下图: 所以只要把的缺失先丢弃,再统计该的唯一的个数即可。...代码实现 数据读入 检测唯一的所有并丢弃 最后总结一下,Pandas 在数据清洗方面有非常多实用的操作,很多时候我们想不到只是因为没有接触过类似的案例或者不知道怎么转换语言描述,比如 “...唯一 ” --> “ 除了空以外的唯一的个数等于1 ” ,许多坑笔者都已经踩过了,欢迎查看我的其余文章,提建议,共同进步。

5.7K21

Pandas替换的简单方法

这可能涉及从现有创建新,或修改现有以使它们适合更易于使用。为此,Pandas 提供了多种方法,您可以使用这些方法来处理 DataFrame 中所有数据类型的。...在这篇文章中,让我们具体看看在 DataFrame 中的替换和子字符串。当您想替换中的每个或只想编辑的一部分时,这会派上用场。 如果您想继续,请在此处下载数据集并加载下面的代码。...import pandas as pd df = pd.read_csv('WordsByCharacter.csv') 使用“替换”来编辑 Pandas DataFrame 系列()中的字符串...Pandas 中的 replace 方法允许您在 DataFrame 中的指定系列中搜索,以查找随后可以更改的或子字符串。...但是,在想要将不同的值更改为不同的替换的情况下,不必多次调用 replace 方法。相反,可以简单地传递一个字典,其中键是要搜索的,而是要替换原始的内容。下面是一个简单的例子。

5.5K30
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Pandas处理缺失

    Pandas的缺失 Pandas 标签方法表示缺失,包括两种 Python 原有的缺失: 浮点数据类型的 NaN Python的 None 对象。...Pandas中NaN与None的差异 虽然 NaN 与 None 各有各的用处, 但是 Pandas 把它们看成是可以等价交换的, 在适当的时候会将两者进行替换: pd.Series([1, np.nan...为了完成这种交换过程, Pandas 提供了一些方法来发现、 剔除、 替换数据结构中的缺失, 主要包括以下几种。 isnull() 创建一个布尔类型的掩码标签缺失。..., 因为可能有时候只需要剔除全部是缺失的行或, 或者绝大多数是缺失的行或。...填充缺失 有时候可能并不想移除缺失, 而是想把它们替换成有效的数值。有效的可能是像 0、 1、 2 那样单独的, 也可能是经过填充或转换得到的。

    2.8K10

    Python-科学计算-pandas-13-列名删除替换nan

    Python的科学计算及可视化 今天讲讲pandas模块 修改Df列名,删除某,以及将nan替换为字符串yes Part 1:目标 ?...目标: 修改列名:{'time': 'date', 'pos': 'group', 'value1': 'val1', 'value3': 'val3'} 删除value2 替换nan为yes Df...df_2.drop(['value2'], axis=1, inplace=True) print("删除", "\n", df_2, "\n") # 替换nan df_2.fillna("yes...=True表示对原df进行操作,保留操作后的结果,与第1点的情况不同 df_2.fillna("yes", inplace=True) 将nan用字符串yes进行替换 定义nan使用np.nan方法...实际情况中,当df某行某没有赋值,会出现nan情况,对于nan有些情况需要处理,例如使用Django进行网站搭建,后端向前端反馈数据时,不能包括nan

    2K10

    使用pandas筛选出指定所对应的行

    pandas中怎么样实现类似mysql查找语句的功能: select * from table where column_name = some_value; pandas中获取数据的有以下几种方法...: 布尔索引 位置索引 标签索引 使用API 假设数据如下: import pandas as pd import numpy as np df = pd.DataFrame({'A': 'foo bar...数据提取不止前面提到的情况,第一个答案就给出了以下几种常见情况:1、筛选出列等于标量的行,== df.loc[df['column_name'] == some_value] 2、筛选出列属于某个范围内的行...,isin df.loc[df['column_name'].isin(some_values)] # some_values是可迭代对象 3、多种条件限制时使用&,&的优先级高于>=或= A) & (df['column_name'] <= B)] 4、筛选出列不等于某个/些的行 df.loc[df['column_name

    19K10

    使用Pandas实现1-6分别和第0比大小得较小

    一、前言 前几天在Python白银交流群【星辰】问了一个pandas处理Excel数据的问题,提问截图如下: 下图是他的原始代码截图: 二、实现过程 其实他这个代码,已经算实现了,如果分别进行定义的话...,每一做一个变量接收,也是可以实现效果的,速度上虽然慢一些,但是确实可行。...,如下所示: df['min'] = df[['标准数据', '测试1']].min(axis=1) print(df['min']) 后来【dcpeng】还给了一个代码,如下所示: import pandas...for i in range(1, 4): df[f'min{i}'] = df[['标准数据', f'测试{i}']].min(axis=1) print(df) 看上去确实是实现了多比较的效果...这篇文章主要盘点了一个Pandas处理的问题,文中针对该问题,给出了具体的解析和代码实现,帮助粉丝顺利解决了问题。

    1.2K20

    用过Excel,就会获取pandas数据框架中的、行和

    在Excel中,我们可以看到行、和单元格,可以使用“=”号或在公式中引用这些。...df.columns 提供(标题)名称的列表。 df.shape 显示数据框架的维度,在本例中为4行5。 图3 使用pandas获取 有几种方法可以在pandas中获取。...因为我们引号将字符串(列名)括起来,所以这里也允许使用带空格的名称。 图5 获取多 方括号表示法使获得多变得容易。语法类似,但我们将字符串列表传递到方括号中。...在pandas中,这类似于如何索引/切片Python列表。 要获取前三行,可以执行以下操作: 图8 使用pandas获取单元格 要获取单个单元格,我们需要使用行和的交集。....loc[]方法 正如前面所述,.loc的语法是df.loc[行,],需要提醒行(索引)和的可能是什么? 图11 试着获取第3行Harry Poter的国家的名字。

    19.1K60

    合并excel的两,为空的单元格被另一替换

    一、前言 前几天在Python铂金交流群【逆光】问了一个Pandas数据处理的问题,问题如下:请问 合并excel的两,为空的单元格被另一替换。...【Siris】:你是说c是a和b的内容拼接起来是么 【逆光】:是 【Siris】:那你其实可以直接在excel里CONCAT函数。 【不上班能干啥!】:只在excel里操作,速度基本没啥改变。...pandas里两不挨着也可以bfill。 【瑜亮老师】:@逆光 给出两个方法,还有其他的解决方法,就不一一展示了。 【逆光】:报错,我是这样写的。...就是你要给哪一全部赋值为相同的,就写df['列名'] = ''。不要加方括号,如果是数字,就不要加引号。 【逆光】:我也试过,分开也是错的· 【瑜亮老师】:哦,是这种写法被替换了。...【瑜亮老师】:3一起就是df.loc[:, ['1', '', '3'']] = ["", 0, 0] 【不上班能干啥!】:起始这行没有报错,只是警告,因为你这样操作会影响赋值前的变量。

    10710

    Pandas针对某的百分数取最大无效?(上篇)

    一、前言 前几天在Python白银交流群【上海新年人】问了一个Pandas数据提取的问题,问题如下:大佬们,我发现个问题,请教一下,我把某一譬如0.001什么的,转化了1%以后,再对某做print(...df[df.点击 == df['点击'].max()],最大 明明有15%的却显示不出来,只显示出来10%以下的,是什么原因啊?...二、实现过程 后来【瑜亮老师】也给了一个提示如下:因为你的百分比这一是文本格式的。首先的话需要进行数据类型转换,现在先转为flaot型的。...df[df.比例 == df.比例.max()] max1['比例'] = max1['比例'].apply(lambda x: '{:.2%}'.format(x)) print(max1) 先取最大所在的行...这篇文章主要盘点了一个Pandas数据提取的问题,文中针对该问题,给出了具体的解析和代码实现,帮助粉丝顺利解决了问题。

    11310

    Pandas针对某的百分数取最大无效?(下篇)

    一、前言 前几天在Python白银交流群【上海新年人】问了一个Pandas数据提取的问题,问题如下:大佬们,我发现个问题,请教一下,我把某一譬如0.001什么的,转化了1%以后再对某做print(df...[df.点击 == df['点击'].max()],最大 明明有15%的却显示不出来,只显示出来10%以下的,是什么原因啊?...上一篇文章中【瑜亮老师】先取最大所在的行,然后在转换格式展示数据。这个思路顺利地解决了粉丝的问题,这一篇文章我们一起来看看另外的一个解决思路。那如果这excel中已经有百分数了,怎么取最大数?...粉丝提问:文本格式为什么7.81%这个可以筛选出来呢? 答:文本比大小是按照从左向右挨个位置比较的,"7%">"23%",因为7比2大,后面的3根本不参与比较。...这篇文章主要盘点了一个Pandas数据提取的问题,文中针对该问题,给出了具体的解析和代码实现,帮助粉丝顺利解决了问题。

    17210

    翻转得到最大等行数(查找相同的模式,哈希计数

    题目 给定由若干 0 和 1 组成的矩阵 matrix,从中选出任意数量的并翻转其上的 每个 单元格。 翻转后,单元格的从 0 变成 1,或者从 1 变为 0 。...返回经过一些翻转后,行上所有都相等的最大行数。 示例 1: 输入:[[0,1],[1,1]] 输出:1 解释:不进行翻转,有 1 行所有都相等。...示例 2: 输入:[[0,1],[1,0]] 输出:2 解释:翻转第一之后,这两行都由相等的组成。...示例 3: 输入:[[0,0,0],[0,0,1],[1,1,0]] 输出:2 解释:翻转前两之后,后两行由相等的组成。...解题 一开始想是不是动态规划 看答案是找最多出现的模式,如11011,00100,反转第3后变成11111,00000,都是1或者0 那把0开头的或者1开头的,选一种,全部翻转,哈希表计数,找到最多出现的

    2.1K20

    盘点使用Pandas解决问题:对比两数据取最大的5个方法

    一、前言 前几天在Python星耀交流群有个叫【iLost】的粉丝问了一个关于使用pandas解决两数据对比的问题,这里拿出来给大家分享下,一起学习。...大概意思是说在DF中有2数据,想每行取两数据中的最大,形成一个新,该怎么写?最开始【iLost】自己使用了循环的方法写出了代码,当然是可行的,但是写的就比较难受了。...方法一:【月神】解答 其实这个题目的逻辑和思路也相对简单,但是对于Pandas不熟悉的小伙伴,接受起来就有点难了。...使用numpy结合pandas,代码如下: df['max4'] = np.where(df['cell1'] > df['cell2'],df['cell1'], df['cell2']) df...这篇文章基于粉丝提问,针对df中,想在每行取两数据中的最大,作为新的一问题,给出了具体说明和演示,一共5个方法,顺利地帮助粉丝解决了问题,也帮助大家玩转Pandas,学习Python相关知识。

    4.1K30

    Python开发之Pandas的使用

    milk 8 bread 8 dtype: int64 .drop()函数并不会修改原来的数据,如果你想要修改原数据的话,可以选择添加参数inplace = True或者是原数据替换...其参数如下: value:用来替换NaN的 method:常用有两种,一种是ffill前向填充,一种是backfill后向填充 axis:0为行,1为...inplace:是否替换原数据,默认为False limit:接受int类型的输入,可以限定替换前多少个NaN 五、数据分析流程及Pandas应用 1、打开文件 python...(['col_name'],axis = 1) #缺失的处理 df.fillna(mean_value)#替换缺失 df.dropna()#删除包含缺失的行 df.dropna(axis = 1,...how = 'all')#只删除所有数据缺失的 #删除重复 drop_duplicates(inplace = True) #更改某行//位置数据 iloc或者loc直接替换修改即可 #更改数据类型

    2.9K10

    Pandas速查卡-Python数据科学

    df.info() 索引,数据类型和内存信息 df.describe() 数值的汇总统计信息 s.value_counts(dropna=False) 查看唯一计数 df.apply(pd.Series.value_counts...) 所有的唯一计数 选择 df[col] 返回一维数组col的 df[[col1, col2]] 作为新的数据框返回 s.iloc[0] 按位置选择 s.loc['index_one'] 按索引选择...=n) 删除所有小于n个非空的行 df.fillna(x) x替换所有空 s.fillna(s.mean()) 将所有空替换为均值(均值可以统计部分中的几乎任何函数替换) s.astype(float...) 将数组的数据类型转换为float s.replace(1,'one') 将所有等于1的替换为'one' s.replace([1,3],['one','three']) 将所有1替换为'one',...(平均值可以统计部分中的几乎任何函数替换) df.pivot_table(index=col1,values=[col2,col3],aggfunc=max) 创建一个数据透视表,按col1分组并计算

    9.2K80

    高效的5个pandas函数,你都用过吗?

    Nunique Nunique用于计算行或列上唯一的数量,即去重后计数。这个函数在分类问题中非常实用,当不知道某字段中有多少类元素时,Nunique能快速生成结果。...对year进行唯一计数: df.year.nunique() 输出:10 对整个dataframe的每一个字段进行唯一计数: df.nunique() ?...object类型包括字符串和混合(数字及非数字)。 object类型比较宽泛,如果可以确定为具体数据类型,则不建议object。...5. replace 顾名思义,replace是用来替换df中的,赋以新的。...value:替换后的 inplace:是否要改变原数据,False是不改变,True是改变,默认是False limit:控制填充次数 regex:是否使用正则,False是不使用,True是使用,

    1.2K20
    领券