1、用两个数组分别存储数据元素(顶点)的信息和数据元素之间的关系(边或弧)的信息。
A graph which is connected and acyclic can be considered a tree. The height of the tree depends on the selected root. Now you are supposed to find the root that results in a highest tree. Such a root is called the deepest root.
拓扑排序在工程管理领域中的应用广泛,可用于判断工程能否顺利开展,即判断有向图中是否存在回路。对于一个有向图,先由键盘输入其顶点和弧的信息,采用恰当存储结构保存该有向图后,依据拓扑排序算法思想输出其相应的顶点拓扑有序序列,并提示用户是否存在回路。
树(Tree)是一种非线性的数据结构,由若干个节点(Node)组成。树的定义包括以下几个术语:
这篇文章主要来讲一下邻接矩阵 邻接表 链式前向星(本篇需要具备一定图的基础知识,至少邻接矩阵之前要会,这里主要讲解邻接表和链式前向星)
最近想回过头来看看以前写的一些代码,可叹为何刚进大学的时候不知道要养成写博客的好习惯。现在好多东西都没有做记录,后面也没再遇到相同的问题,忘的都差不多了。只能勉强整理了下面写的一些代码,这些代码有的有参考别人的代码,但都是自己曾经一点点敲的,挂出来,虽然很基础,但希望能对别人有帮助。
前面几篇已经介绍了线性表和树两类数据结构,线性表中的元素是“一对一”的关系,树中的元素是“一对多”的关系,本章所述的图结构中的元素则是“多对多”的关系。图(Graph)是一种复杂的非线性结构,在图结构中,每个元素都可以有零个或多个前驱,也可以有零个或多个后继,也就是说,元素之间的关系是任意的。现实生活中的很多事物都可以抽象为图,例如世界各地接入Internet的计算机通过网线连接在一起,各个城市和城市之间的铁轨等等。
景禹: 图的遍历方法包括 深度优先遍历(搜索) 和 广度优先遍历(搜索) 两种方式。小禹禹能给我说一下树的四种遍历方式吗?
在我们生活中,每天使用的微信等社交软件,我们的好友关系网也能被形象成一种图结构,如图,图能表示各种丰富的关系结构
2、假设有n个核酸样本,其中m个病毒成阳性。一开始进行分组,就是武汉采用的分组检测。一组是阴性那么这一组就不再检测。一组是阳性,则再把这一组再次分组。
• 节点a 的邻接点是节点b 、d ,其邻接点的存储下标为1、3,按照头插法(逆序)将其放入节点a 后面的单链表中;
这两种方法在形式上相像,其区别在于:pa是指针变量,a是数组名。值得注意的是:pa是一个可以变化的指针变量,而a是一个常数。因为数组一经被说明,数组的地址也就是固定的,因此a是不能变化的,不允许使用a++、++a或语句a+=10,而pa++、++pa、pa+=10则是正确的。
C语言数据结构图的基本操作及遍历(存储结构为邻接矩阵)请查看:https://www.omegaxyz.com/2017/05/17/graphofds2/
PS:邻接表,存储方法跟树的孩子链表示法相类似,是一种顺序分配和链式分配相结合的存储结构。如这个表头结点所对应的顶点存在相邻顶点,则把相邻顶点依次存放于表头结点所指向的单向链表中。图的邻接表储存方式相对于邻接矩阵比较节约空间,对于邻接矩阵需要分别把顶点和边(顶点之间的关系)用一维数组和二维数组储存起来。而邻接表则是把顶点按照顺序储存到一维数组中,然后再通过链式方式,把有关系的顶点下标链接到后方,咱们先不考虑权重问题,结构体定义简单一点,当然加上权值也不难。下方看图解释。 邻接表 有向图 无向图 逆邻接表 有
图是一种非线性数据结构,它由节点(也称为顶点)和连接这些节点的边组成。图可以用来表示各种关系和连接,比如网络拓扑、社交网络、地图等等。图的节点可以包含任意类型的数据,而边则表示节点之间的关系。图有两种常见的表示方法:邻接矩阵和邻接表。
图是计算机科学中的一种重要数据结构,它是由节点和边组成的集合,用于表示物体之间的关系。本篇博客将重点介绍图的基本概念和表示方法,包括有向图、无向图、带权图的概念,以及邻接矩阵和邻接表两种常用的图表示方法,并通过实例代码演示图的创建和基本操作,每行代码都配有详细的注释。
数据结构想必大家都不会陌生,对于一个成熟的程序员而言,熟悉和掌握数据结构和算法也是基本功之一。数据结构本身其实不过是数据按照特点关系进行存储或者组织的集合,特殊的结构在不同的应用场景中往往会带来不一样的处理效率。
设G=(V,E)是n个顶点的图,则G的邻接矩阵用n阶方阵G表示,若(Vi ,Vj )或< Vi ,Vj >属于E(G),则G[i][j]为1,否则为0。
图 的 遍历 就是 对 图 中的 结点 进行遍历 , 遍历 结点 有如下两种策略 :
•https://liuyangjun.blog.csdn.net/article/details/82759650
一个项目往往会包含很多代码源文件。编译器在编译整个项目时,需按照依赖关系,依次编译每个源文件。比如,A.cpp依赖B.cpp,那在编译时,编译器需要先编译B.cpp,才能编译A.cpp。 编译器通过分析源文件或者编译配置文件(比如Makefile文件),来获取这种局部的依赖关系。那编译器又该如何通过源文件两两之间的局部依赖关系,确定一个全局的编译顺序呢?
上一篇文章,对于图有了一个简单的描述,对于图的存储一般有两种方式:邻接表和邻接矩阵,这篇文章分别用C++和Java实现图的构建 实现代码(C++) // // main.cpp // Graph // // Created by 陈龙 // Copyright © 2019 陈龙. All rights reserved. // #include <iostream> #include <vector> using namespace std; //最大顶点数 const int maxV =
大家好,我是架构君,一个会写代码吟诗的架构师。今天说一说【C#数据结构系列】图[通俗易懂],希望能够帮助大家进步!!!
举个栗子,大家一定都用过微信,假设你的微信朋友圈中有若干好友:张三、李四、王五、赵六、七大姑、八大姨。
其实在上一篇介绍树结构的时候,已经有了一些算法的相关内容介入。而在图这种数据结构下,会有更多有关图的算法,比如广度优先搜索,深度优先搜索最短路径算法等等。这是我们要介绍的最后一个数据结构。同时也是本系列最为复杂的一个。那么我们先来简单介绍一下,什么是图? 一、图的概念 简单说,图就是网络结构的抽象模型,图是一组由边连接的节点(或顶点)。任何二元关系都可以用图来表示。比如我们的地图,地铁线路图等。都是图的实际应用。 接着我们看看图的一些相关概念和术语。 一个图G = (V,E)由以下元素组成:
邻接表的问题:计算有向图的入度非常麻烦(入度:指向自己的数量,出度:指向别人的数量)
邻接矩阵优点是简单,对于小图,很容易看到哪些节点连接到其他节点。但是大多数单元格是空的,即稀疏。
含有n个顶点的无向完全图有多少条边? n×(n-1)/2条边 含有n个顶点的有向完全图有多少条弧? n×(n-1)条边
术语表: 多重图:将含有平行边的图称为多重图。 简单图:将没有平行边和自环的图称为简单图。 相邻:当两个顶点通过一条边相连时,称这两个顶点相邻,并称这条边依附于这两个顶点。 度数:一个顶点的度数即依附于它的边的总数。 简单路径:是一条没有重复顶点的路径。 简单环:是一条(除了起点和终点必须相同外)没有相同顶点的环。 路径或环的长度:其中所包含的边数。(有权无向图则为边的权重和) 连通图:从任一顶点能够达到另一个任意顶点。 无向图的API: public class Graph Graph(int V)
图的遍历分为深度优先遍历(Depth_First_Search)和广度优先遍历(Breadth_First_Search),
V0与V1、V2、V3都有边,因此第0行的1、2、3位置处置1。 Vi与Vj有边,则第i行的第j位置处置1。
1、图的遍历 和树的遍历类似,图的遍历也是从某个顶点出发,沿着某条搜索路径对图中每个顶点各做一次且仅做一次访问。它是许多图的算法的基础。 深度优先遍历和广度优先遍历是最为重要的两种遍历图的方法。它们对无向图和有向图均适用。 注意: 以下假定遍历过程中访问顶点的操作是简单地输出顶点。 2、布尔向量visited[0..n-1]的设置 图中任一顶点都可能和其它顶点相邻接。在访问了某顶点之后,又可能顺着某条回路又回到了该顶点。为了避免重复访问同一个顶点,必须记住每个已访问的顶点。为此,可设一布尔向量visited[0..n-1],其初值为假,一旦访问了顶点Vi之后,便将visited[i]置为真。 深度优先遍历(Depth-First Traversal) 1.图的深度优先遍历的递归定义 假设给定图G的初态是所有顶点均未曾访问过。在G中任选一顶点v为初始出发点(源点),则深度优先遍历可定义如下:首先访问出发点v,并将其标记为已访问过;然后依次从v出发搜索v的每个邻接点w。若w未曾访问过,则以w为新的出发点继续进行深度优先遍历,直至图中所有和源点v有路径相通的顶点(亦称为从源点可达的顶点)均已被访问为止。若此时图中仍有未访问的顶点,则另选一个尚未访问的顶点作为新的源点重复上述过程,直至图中所有顶点均已被访问为止。 图的深度优先遍历类似于树的前序遍历。采用的搜索方法的特点是尽可能先对纵深方向进行搜索。这种搜索方法称为深度优先搜索(Depth-First Search)。相应地,用此方法遍历图就很自然地称之为图的深度优先遍历。 2、深度优先搜索的过程 设x是当前被访问顶点,在对x做过访问标记后,选择一条从x出发的未检测过的边(x,y)。若发现顶点y已访问过,则重新选择另一条从x出发的未检测过的边,否则沿边(x,y)到达未曾访问过的y,对y访问并将其标记为已访问过;然后从y开始搜索,直到搜索完从y出发的所有路径,即访问完所有从y出发可达的顶点之后,才回溯到顶点x,并且再选择一条从x出发的未检测过的边。上述过程直至从x出发的所有边都已检测过为止。此时,若x不是源点,则回溯到在x之前被访问过的顶点;否则图中所有和源点有路径相通的顶点(即从源点可达的所有顶点)都已被访问过,若图G是连通图,则遍历过程结束,否则继续选择一个尚未被访问的顶点作为新源点,进行新的搜索过程。 3、深度优先遍历的递归算法 (1)深度优先遍历算法 typedef enum{FALSE,TRUE}Boolean;//FALSE为0,TRUE为1 Boolean visited[MaxVertexNum]; //访问标志向量是全局量 void DFSTraverse(ALGraph *G) { //深度优先遍历以邻接表表示的图G,而以邻接矩阵表示G时,算法完全与此相同 int i; for(i=0;i<G->n;i++) visited[i]=FALSE; //标志向量初始化 for(i=0;i<G->n;i++) if(!visited[i]) //vi未访问过 DFS(G,i); //以vi为源点开始DFS搜索 }//DFSTraverse (2)邻接表表示的深度优先搜索算法 void DFS(ALGraph *G,int i){ //以vi为出发点对邻接表表示的图G进行深度优先搜索 EdgeNode *p; printf("visit vertex:%c",G->adjlist[i].vertex);//访问顶点vi visited[i]=TRUE; //标记vi已访问 p=G->adjlist[i].firstedge; //取vi边表的头指针 while(p){//依次搜索vi的邻接点vj,这里j=p->adjvex if (!visited[p->adjvex])//若vi尚未被访问 DFS(G,p->adjvex);//则以Vj为出发点向纵深搜索 p=p->next; //找vi的下一邻接点 } }//DFS (3)邻接矩阵表示的深度优先搜索算法 void DFSM(MGraph *G,int i) { //以vi为出发点对邻接矩阵表示的图G进行DFS搜索,设邻接矩阵是0,l矩阵 int j; printf("visit vertex:%c",G->vexs[i]);//访问顶点vi visited[i]=TRUE; for(j=0;j<G->n;j++) //依次搜索vi的邻接点 if(G->edges[i][j]==1&&!vi
图的周游:是一种按某种方式系统地访问图中的所有节点的过程,它使每个节点都被访问且只访问一次。图的周游也称图的遍历。
其实在上一篇介绍树结构的时候,已经有了一些算法的相关内容介入。而在图这种数据结构下,会有更多有关图的算法,比如广度优先搜索,深度优先搜索最短路径算法等等。这是我们要介绍的最后一个数据结构。同时也是本系列最为复杂的一个。那么我们先来简单介绍一下,什么是图?
当一个图为稀疏图时,使用邻接矩阵表示法显然要浪费大量的存储空间。而图的邻接表示法结合了顺序存储和链式存储方法,大大减少了这种不必要的浪费。
No.15期 图在计算机中的存储 Mr. 王:还有一个很重要的问题,就是图在计算机中的表示。虽然我们看到的图边和点等都是非常直观的,可以画成一个圆圈里带一个数字表示顶点,用一条带有数字的线段或者箭头来表示边,但是在计算机中,显然不能用这种方式来存储它。 小可开玩笑地说:要是把图存成图片,那可太占空间了,而且还不容易读取上面的数字。 Mr. 王:是啊,图已经是对现实世界的一个抽象了,在计算机中我们要对其进行进一步的抽象。你想一想,图由哪两部分组成? 小可:边的集合和顶点的集合。 Mr. 王:在手绘的图中,
无论是有向图还是无向图,主要的存储方式都有两种:邻接矩阵和邻接表。前者图的数据顺序存储结构,后者属于图的链接存储结构。
首先题目给出了说明,这棵树一共有n个节点,且边的权重为1,并且有m个特殊节点,虽然题目说了这是一个树,但是要求是找到距离m个特殊节点"均"不超过d的节点,因此如果从某一个特殊节点出发,它既可以向上查找,也可以向下查找,这明明就是一个图,题目忽悠人的好不!!!
图 数据结构 中 , 每个 结点 是一个 元素 , 可以有 0 个或 多个 相邻元素 , 两个结点 之间的 连接 称为 边 ;
由于后续更新「面试专场」的好几篇文章都涉及到 图 这种数据结构,因此打算先普及一下 图 的相关理论支持,如果后面的相关内容有些点不太容易理解,可以查阅此篇文章。本文不建议一口气阅读完毕,可以先浏览一遍,在后续有需要的时候进行查阅即可。
PS:这篇文章是之前 为什么我没写过「图」相关的算法?的修订版,主要是因为旧文中缺少 visited 数组和 onPath 数组的讨论,这里补上,同时将一些表述改得更准确,文末附带图论进阶算法。
图的遍历和树的遍历类似,我们希望从图中某一顶点出发访遍图中其余顶点,且使每一个顶点仅被访问一次,这一过程就叫做图的遍历(Traverse Graph)。 图的遍历方法一般有两种,第一种是深度优先遍历(Depth First Search),也有称为深度优先搜索,简称为DFS。第二种是《广度优先遍历(Breadth First Search)》,也有称为广度优先搜索,简称为BFS。我们在《堆栈与深度优先搜索》中已经较为详细地讲述了深度优先搜索的策略,这里不再赘述。我们也可以把图当作一个迷宫,设定一个起始点
邻接表作为图的一种存储方式,在存储稀疏图上相对于邻接矩阵有相当大的空间节省。如一个稀疏图的顶点个个数为n,边数为e。用邻接矩阵存储需要n^2空间,而真正进行存储的只有2e个空间, 剩下的n^2-2e都浪费了。但是对于邻接表来讲,存储空间只需要n+2e个,相对于邻接矩阵减少了很多。邻接表虽然在空间上有很大的优势,但是对于一个有向图,如果需要查找每个顶点的入度就需要遍历整个邻接表,在效率上很低下的。因此才有了逆邻接表的诞生。
深度优先搜索(depth-first search)是对先序遍历(preorder traversal)的推广。”深度优先搜索“,顾名思义就是尽可能深的搜索一个图。想象你是身处一个迷宫的入口,迷宫中的
邻接表包含数组和单链表两种数据结构,其中每个数组元素也是单链表的头结点,数组元素包含两个属性,属性一是顶点编号info,属性二是指针域next指向与它相连的顶点信息。
图结构的元素之间虽然具有“多对多”的关系,但是同样可以采用顺序存储,即使用数组有效地存储图。
该文讲述了如何利用邻接表存储图,并使用广度优先搜索算法对图进行遍历。文章首先介绍了邻接表存储图的基本概念,然后定义了广度优先搜索算法的实现。最后,通过一个具体的例子展示了如何使用邻接表存储图和广度优先搜索算法进行图的遍历。
版权声明:本文为博主原创文章,遵循 CC 4.0 BY 版权协议,转载请附上原文出处链接和本声明。
领取专属 10元无门槛券
手把手带您无忧上云