首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

用python实现阻尼谐波振荡代码

阻尼谐波振荡是指在受到阻尼力的影响下,振荡系统产生的一种周期性振动。要用Python实现阻尼谐波振荡代码,可以使用科学计算库NumPy和绘图库Matplotlib来进行计算和绘图。

下面是一个简单的示例代码,用来模拟阻尼谐波振荡:

代码语言:txt
复制
import numpy as np
import matplotlib.pyplot as plt

# 定义系统参数
m = 1.0  # 质量
k = 1.0  # 弹性系数
b = 0.2  # 阻尼系数

# 定义时间步长和总时长
dt = 0.01  # 时间步长
total_time = 10.0  # 总时长

# 定义初始条件
x0 = 1.0  # 初始位置
v0 = 0.0  # 初始速度

# 初始化数组
t = np.arange(0.0, total_time, dt)
x = np.zeros_like(t)
v = np.zeros_like(t)

# 设置初始值
x[0] = x0
v[0] = v0

# 进行数值计算
for i in range(1, len(t)):
    F = -k * x[i-1] - b * v[i-1]  # 力的计算
    a = F / m  # 加速度的计算
    v[i] = v[i-1] + a * dt  # 更新速度
    x[i] = x[i-1] + v[i] * dt  # 更新位置

# 绘制振荡曲线
plt.plot(t, x)
plt.xlabel('Time')
plt.ylabel('Displacement')
plt.title('Damped Harmonic Oscillation')
plt.show()

在这段代码中,首先定义了阻尼谐波振荡系统的参数(质量、弹性系数、阻尼系数),以及时间步长和总时长。然后,根据欧拉方法进行数值计算,通过迭代更新位置和速度,最后使用Matplotlib库绘制了振荡曲线。

这个示例代码只是实现了一个简单的阻尼谐波振荡模型,实际应用中可能需要根据具体问题进行参数调整和算法优化。

关于Python的阻尼谐波振荡代码,如果想了解更多关于科学计算和绘图的库,可以参考腾讯云的AI开发平台-ModelArts。ModelArts提供了丰富的机器学习和数据处理功能,适合进行科学计算和振荡模型的实现。具体的产品介绍和相关链接如下:

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • 科学瞎想系列之一三四 电机绕组(11)

    讲完了电势高次谐波的产生,本期讲电势高次谐波的削弱。 1 为什么要削弱电势中的高次谐波 发电机电势中如果存在大量高次谐波,将使电势波形变坏,对电网造成谐波污染,供电品质恶化,产生许多不良影响。高次谐波电势的主要危害包括: ① 发电机本身附加损耗增大,效率降低,温升增高。 ② 可能引起输电线路的电感和电容发生谐振,产生过电压。 ③ 对邻近的通讯线路和设施产生干扰。 ④ 对并网运行的异步电动机产生有害的附加转矩和损耗,进而使电动机的起动和运行性能恶化。 ⑤ 对包括发电机本身在内的所有并网运行的电机,乃至其它用电负载产生振动和噪声。 正因为电势高次谐波存在以上危害,相关标准和规范中都对电机的端电压波形及其高次谐波含量进行了限制,主要指标有两个:一是空载电压(反电势)的正弦畸变率(Ku);二是电话谐波因数(THF)。两个指标的定义为: Ku=(∑Un²)^½/U1•100% ⑴ 式中:U1为基波电压有效值;Un为n次谐波电压有效值。 THF=[∑(λn•Un)²]^½/U•100% ⑵ 式中:U为线电压有效值;Un为线电压中n次谐波电压有效值;λn为n次谐波权衡系数,该系数是综合考虑电力线路对电话通讯线路的各方面干扰因素和人耳听觉等因素而实验确定的,见表1。

    02

    科学瞎想系列之一三二 电机绕组(9)

    上期讲了主极磁场分布不是正弦时产生的磁势高次谐波。本期我们讲另一种谐波电势——齿谐波电势。所谓齿谐波电势就是谐波的次数与每极槽数有着特定关系的谐波电势,根据上期讲的“种瓜得瓜种豆得豆”理论,其实齿谐波电势也是由于主极磁势中存在着齿谐波磁势引起的,只不过这种次数的谐波电势被齿槽给“调制放大”了,为了说清楚齿谐波电势被“调制放大”的机理,我们还是从任意υ次谐波电势的幅值讲起。 1 任意υ次谐波电势的大小 1.1 任意υ次谐波磁势产生的谐波磁场 上一期的(11)式讲到,对于转子主极任意一个υ次谐波磁势所产生的磁场包括三种,现将上期的第(11)式的推导结果重新列出如下: Bυ=Bυ0•sin(υ•ωt-υ•p•α)+∑Bυk•sin[υ•ωt-(k•Z+υ•p)α]+∑Bυk•sin[υ•ωt+(k•Z-υ•p)α] ⑴ 式中:Z为定子槽数;p为极对数;ω为转子旋转电角速度;k=1,2,3…; Bυ0=Fυ•λ0 ⑵ Bυk=(1/2)•Fυ•λk ⑶ 上述⑴式表明,任意一个υ次谐波磁势都会在气隙中产生三种谐波磁场:一是极对数为υ•p、转向与转子相同(顺转)、转速为同步转速的基本谐波磁场,(⑴式中第一项);二是一系列极对数为k•Z+υ•p(k=1,2,3…),转速为n1•υ•p/(k•Z+υ•p)的顺转谐波磁场(⑴式中第二项和式);三是一系列极对数为k•Z-υ•p,转向或顺转或反转、转速为n1•υ•p/(k•Z-υ•p)的谐波磁场(⑴式中第三项和式)。虽然这些谐波磁场的极对数各不相同,转速和转向也各式各样,但却都在定子绕组中感应出相同频率υ•f1的谐波电势。接下来我们就分别对这三种磁场产生的谐波电势进行解析计算,需要说明的是,这里用解析法计算纯粹是为了分析影响谐波电势大小的因素,以便后续讲解削弱谐波电势的机理,实际设计电机时还是建议用有限元进行定量仿真计算。 1.2 基本谐波磁场产生的υ次谐波电势 基本谐波磁场的极对数为υ•p,转速为n1,磁场幅值为Bυ0。感应出的谐波电势频率为υ•f1,谐波电势有效值为: Eυ0=4.44•υ•f1•Kdpυ•W•Φυ0 ⑷ Φυ0=(2/π)•Bυ0•τυ0•l ⑸ τυ0=π•D/(2υ•p) ⑹ 式中:Φυ0为基本谐波磁场的每极磁通;τυ0为基本谐波磁场的极距;D为电枢直径;l为铁心长;W为每相串联匝数;Kdpυ为υ次谐波绕组系数。将⑵、⑸、⑹式代入⑷式得: Eυ0=4.44•υ•f1•Kdpυ•W•(2/π)•Fυ•λ0•π•D•l/(2υ•p) =4.44•f1•(Kdpυ•W/p)•D•l•Fυ•λ0 =Ke•Kdpυ•Fυ•λ0 ⑺ 式中:Ke=4.44•f1•W•D•l/p,对于已经制造完成的电机,在一定的转速下(f1一定),Ke为一常数。由⑺式可见,由基本谐波磁场产生的υ次谐波电势与υ次谐波的绕组系数Kdpυ、υ次谐波的磁势幅值Fυ以及气隙平均磁导λ0成正比,要想削弱基本谐波磁场产生的谐波电势,需要从这三个方面入手(后续会详细讲解削弱方法)。 1.3 极对数为k•Z+υ•p的谐波磁场产生的υ次谐波电势 极对数为k•Z+υ•p的谐波磁场转速为n1•υ•p/(k•Z+υ•p),磁场幅值为Bυk。在绕组中同样感应出频率为υ•f1的谐波电势,谐波电势有效值为: E′υk=∑【k=1,2,3…】4.44•υ•f1•Kdpυ•W•Φ′υk ⑻ Φ′υk=(2/π)•Bυk•τ′υk•l ⑼ τ′υk=π•D/[2(k•Z+υ•p)] ⑽ 式中:Φ′υk为极对数为k•Z+υ•p的谐波磁场的每极磁通;τ′υk为极对数为k•Z+υ•p的谐波磁场的极距。将⑶、⑼、⑽式代入⑻式并整理得: E′υk=∑【k=1,2,3…】(1/2)•Ke•Kdpυ•Fυ•λk/ [k•Z/(υ•p)+1] =∑【k=1,2,3…】(1/2)•Ke•Kdpυ•Fυ•∑【k=1,2,3…】(λk•(υ•p)/(k•Z+υ•p) =Ke•Kdpυ•Fυ•∑【k=1,2,3…】λk•ξ1 =Eυ0•∑【k=1,2,3…】(λk/λ0)•ξ1 (11) 式中: ξ1=(υ•p)/[2•(k•Z+υ•p)] (12) 由(11)式可见,极对数为k•Z+υ•p (k=1,2,3…)的一系列谐波磁场产生的υ次谐波电势有效值,除了与υ次谐波的绕组系数Kdpυ、υ次谐波的磁势幅值Fυ以及k阶气隙磁导λk成正比外,还与一个系数ξ1有关,由(12)式可见,这个系数ξ1<1,且(λk/λ0)<1,这就意味着这种极对数为k•Z+υ•p (k

    02

    QQ 25年技术巡礼丨技术探索下的清新设计,打造轻盈简约的QQ9

    1999 年 2 月 10 日,QQ 首个版本发布。2024 年是 QQ 25 周年,这款承载几代人回忆的互联网产品仍旧没有停止自我转型的创新脚步。在技术方面,QQ 近期完成了再造底层架构的 NT(New Tech)项目,在手机 QQ 9 上,也发布了全新升级的视觉和体验设计。 最新发布的手机 QQ 9.0 界面轻盈换新,简洁纯粹,氛围轻松,上线后收获了许多网友的好评。腾讯云开发者社区联手 QQ 技术团队,撰写了本篇文章,向大家介绍其中像极光一样灵动的动效,和如弹簧一般可以自由拨动的3D企鹅的技术实现,以及对于视觉打磨和性能优化背后的故事。QQ 25周年技术巡礼系列文章陆续产出中,请大家持续关注腾讯云开发者公众号。

    05

    科学瞎想系列之一一七 NVH那些事(18)

    上期我们讲了各种激振源及结构的固有特性识别,利用上期所介绍的方法可以识别出引起振动噪声问题的主要原因,在得知振动噪声是由于激振源(电磁力波、机械激振、空气动力学)引起还是结构共振引起后,就需要进一步确诊引起振动噪声的具体力波阶次、具体机械原因以及具体空气噪声原因,以便有针对性地采取措施解决问题。本期我们说说各种激振源的特征和判别方法。 1 轴承激振源的特征 通常电机所用的轴承包括滚动轴承和滑动轴承两大类,滚动轴承产生的噪声要比滑动轴承产生的噪声大,双列滚子轴承比单列滚子轴承噪声大。特别是高速运行时,滚动轴承可能是电机最强烈的噪声源。 1.1 滚动轴承激振特征 影响滚动轴承噪声的主要因素包括:内外圈不同心、不平行导致的内外圈歪斜;滚动体大小不一;滚动体的圆度及表面缺陷;内外圈滚道缺陷;内外圈滚道波纹;保持架与滚动体间的间歇;油膜的涡动;润滑油的清洁程度;相关零部件的加工及装配精度等,许多情况下轴承的振动与附近结构零部件形成共振,会放大轴承的振动噪声。不同的原因产生的噪声频率不同,振动噪声幅值也不同。滚动轴承的噪声表现为:碾轧声、撞击声、磨削声、滚落声、保持架声音、灰尘杂质产生的声音等。 1.1.1 频率特征 轴承振动噪声的频谱比较宽,理论上轴承产生的振动噪声可以分布在转频~20kHz范围内,大多情况下多出现在1~5kHz范围内。根据不同的原因,滚动轴承振动噪声的特征频率如下: ① 轴承内外圈滚道缺陷产生的噪声 当轴承内圈或外圈滚道存在凹坑等缺陷时,则每次滚珠滚过缺陷处都会产生一次振动,其振动频率与转速、滚动体个数、缺陷数量以及轴承的尺寸有关,如图1为球轴承剖面图。

    01

    数据中心柴油发电机组带容性负载能力技术研究探讨(上)

    柴油发电机组在数据中心行业的特性应用场景下,容性带载能力及突加重载能力一直是行业研究和攻克的应用难题,腾讯IDC技术专家将从测试和技术研究的角度来剖析其中的奥妙,抛砖引玉。也特别感谢电信侯福平、赖世能、孙文波等专家的技术指导。 柴油发电机其实不是个理想的电压源,其内阻远比市政电力电网的内阻大,随着柴油发电机机组的额定输出的功率容量的减少,其内阻增大的矛盾显得更加突出。 当我们用柴油发电机带电阻性负载时,其影响不易察觉,但如果采用柴油发电机来带整流滤波型负载(例如:计算机和通讯设备、日光灯、各种可控硅相移调

    012

    迁移学习「求解」偏微分方程,条件偏移下PDE的深度迁移算子学习

    本文约3200字,建议阅读5分钟 迁移学习框架能够快速高效地学习异构任务。 传统的机器学习算法旨在孤立地学习,即解决单个任务。在许多实际应用中,收集所需的训练数据和重建模型要么成本高得令人望而却步,要么根本不可能。 迁移学习(TL)能够将在学习执行一个任务(源)时获得的知识迁移到一个相关但不同的任务(目标),从而解决数据采集和标记的费用、潜在的计算能力限制和数据集分布不匹配的问题。 来自美国布朗大学和约翰斯·霍普金斯大学(JHU)的研究人员提出了一种新的迁移学习框架,用于基于深度算子网络 (DeepONet

    02
    领券