首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    什么是数据库的缓存池?

    Buffer Pool 是什么?从字面上看是缓存池的意思,没错,它其实也就是缓存池的意思。它是 MySQL 当中至关重要的一个组件,可以这么说,MySQL的所有的增删改的操作都是在 Buffer Pool 中执行的。 但是数据不是在磁盘中的吗?怎么会和缓存池又有什么关系呢?那是因为如果 MySQL的操作都在磁盘中进行,那很显然效率是很低的,效率为什么低?因为数据库要从磁盘中拿数据啊,那肯定就需要IO啊,并且数据库并不知道它将要查找的数据是磁盘的哪个位置,所以这就需要进行随机IO,那这个性能简直就别玩了。所以 MySQL对数据的操作都是在内存中进行的,也就是在 Buffer Pool 这个内存组件中。

    01

    InnoDB with reduced page sizes wastes up to 6% of disk space(15.InnoDB减少页的大小会造成6%的磁盘空间浪费)

    InnoDB数据存储的研究中,我提到了MySQL的Bug #67963,题目是“InnoDB每16384页中浪费62页”。我说: InnoDB偶尔需要分配一些内部记账页面;每256mib数据对应2个页。为此,它分配一个区段(64个页面),分配所需的两个页面,然后将剩余的区段(62个空闲页面)添加到一个名为FREE_FRAG的区段列表中,该区段用于单页分配。几乎没有从该列表中分配页面,所以这些页面被浪费了。 这是相当微妙的,在任何大型InnoDB表中只浪费0.37%的磁盘空间,但尽管如此,这还是很有趣的,而且很容易修复。 浪费0.37%的磁盘空间是不幸的,但不是一个大问题……

    01

    翻译:The Log-Structured Merge-Tree (LSM-Tree)

    高性能事务系统应用程序通常在提供活动跟踪的历史记录表;同时,事务系统生成$日志记录,用于系统恢复。这两种生成的信息都可以受益于有效的索引。众所周知的设置中的一个例子是TPC-a基准应用程序,该应用程序经过修改以支持对特定账户的账户活动历史记录的有效查询。这需要在快速增长的历史记录表上按帐户id进行索引。不幸的是,基于磁盘的标准索引结构(如B树)将有效地使事务的输入/输出成本翻倍,以实时维护此类索引,从而使系统总成本增加50%。显然,需要一种以低成本维护实时索引的方法。日志结构合并树(LSM树)是一种基于磁盘的数据结构,旨在为长时间内经历高记录插入(和删除)率的文件提供低成本索引。LSM树使用一种延迟和批量索引更改的算法,以一种类似于合并排序的有效方式将基于内存的组件的更改级联到一个或多个磁盘组件。在此过程中,所有索引值都可以通过内存组件或其中一个磁盘组件连续进行检索(除了非常短的锁定期)。与传统访问方法(如B-树)相比,该算法大大减少了磁盘臂的移动,并将在使用传统访问方法进行插入的磁盘臂成本超过存储介质成本的领域提高成本性能。LSM树方法还推广到插入和删除以外的操作。然而,在某些情况下,需要立即响应的索引查找将失去输入/输出效率,因此LSM树在索引插入比检索条目的查找更常见的应用程序中最有用。例如,这似乎是历史表和日志文件的常见属性。第6节的结论将LSM树访问方法中内存和磁盘组件的混合使用与混合方法在内存中缓冲磁盘页面的常见优势进行了比较。

    05

    一条更新sql的完整执行流程(超详细)

    查询流程,我们是不是再研究下更新流程、插入流程和删除流程? 一条查询sql的完整执行流程(从连接到引擎,穿插涉及到的知识,超详细) 在数据库里面,我们说的update操作其实包括了更新、插入和删除。如果大家有看过MyBatis的源码,应该知道Executor里面也只有doQuery()和doUpdate。的方法, 没有 doDelete()和 dolnsert()。 更新流程和查询流程有什么不同呢? 取到数据前和查询的基本流程也是一致的,也就是说,它也要经过解析器、优化器的处理,最后交给执行器。 区别就在于拿到符合条件的数据之后的操作。 但是,要学习更新的执行流程,我们需要先知道以下几个名词的含义: 贴图镇此博客(

    04

    Linux系统中的Page cache和Buffer cache

    Mem:表示物理内存统计。 total:表示物理内存总量(total = used + free)。 used:表示总计分配给缓存(包含buffers 与cache )使用的数量,但其中可能部分缓存并未实际使用。 free:未被分配的内存。 shared:共享内存。 buffers:系统分配但未被使用的buffers数量。 cached:系统分配但未被使用的cache数量。 -/+ buffers/cache:表示物理内存的缓存统计。 used2:也就是第一行中的used – buffers - cached也是实际使用的内存总量。 // used2为第二行 free2 = buffers1 + cached1 + free1 // free2为第二行,buffers1等为第一行 free2:未被使用的buffers与cache和未被分配的内存之和,这就是系统当前实际可用内存。 Swap:表示硬盘上交换分区的使用情况。

    02

    Linux系统中的Page cache和Buffer cache

    Mem:表示物理内存统计。 total:表示物理内存总量(total = used + free)。 used:表示总计分配给缓存(包含buffers 与cache )使用的数量,但其中可能部分缓存并未实际使用。 free:未被分配的内存。 shared:共享内存。 buffers:系统分配但未被使用的buffers数量。 cached:系统分配但未被使用的cache数量。 -/+ buffers/cache:表示物理内存的缓存统计。 used2:也就是第一行中的used – buffers - cached也是实际使用的内存总量。 // used2为第二行 free2 = buffers1 + cached1 + free1 // free2为第二行,buffers1等为第一行 free2:未被使用的buffers与cache和未被分配的内存之和,这就是系统当前实际可用内存。 Swap:表示硬盘上交换分区的使用情况。

    04
    领券