人脸识别是目前商业应用最成熟、最广泛的人工智能技术之一,成为开发者、企业接入AI能力的首选。
云端人脸识别平台方案虽然看起来美好,但是当没有网络的时候呢?当需要控制硬件成本的时候呢?离线则成为人工智能技术落地的关键,这也是将AI从云到端的唯一方式。 当GMIC遇上视觉AI “黑科技”酷炫又好玩
申请步骤 在申请离线识别 SDK 前,如您的账号未进行实名认证,需要您先完成实名认证(企业或个人账号均可),并通过审核。 审核通过后,进入人脸识别控制台 > 离线识别 SDK 管理 页面,单击【立即申请】填写相关申请信息。 按实际情况填写离线 SDK 申请表,提交并审批通过后,即可下载 SDK 测试。 在线绑定设备号 image.png 测试授权 下载 SDK 包前操作:申请通过后,单击 SDK 列表进入详情页,在详情页单击页面头部“绑定设备”TAB 页,复制页面顶部的 APPID 和 SECRETKEY
上一篇文章写了在线调用人脸识别api进行处理,其实很多的客户需求是要求离线使用的,尤其是一些事业单位,严禁这些刷脸数据外泄上传到服务器,尽管各个厂家号称严格保密这些数据,但要阻止这些担心,唯一的解决办法就是设备离线使用,连个屁的网,不联网看你怎么上传,于是离线的人脸识别应用应运而生,比如我们手机上的识别就是本地库在运算,至于本地模型库估计会联网更新,以保持最新的状态。百度的离线人脸识别做的还行,看官网的sdk开发包,更新也是蛮快的,提供了windows、linux、android等版本。
AI 研习社按,在「燎原计划 2018」暨百度 AI 开发者实战营第二季北京站上,百度发布了三项重大消息:开放 EasyDL 平台、发布「深度学习工程师评价标准」、人脸识别全部接口面向中小企业与开发者将永久免费,为 AI 开发者带来了大量福利。
https://cloud.tencent.com/document/product/867/44383
https://cloud.tencent.com/act/event/iaidemo
为人脸登录提供人脸注册集合,基于人脸进行无动作活体检测、及后台在线活体检测算法,判断用户为真人,保障业务环节中的用户真实性判断。
关注腾讯云大学,了解最新行业技术动态 戳【阅读原文】查看55个腾讯云产品全集 一、课程概述 腾讯云神图·人脸识别(Face Recognition)基于腾讯优图强大的面部分析技术,提供包括人脸检测与分析、五官定位、人脸搜索、人脸比对、人脸验证、人员查重、活体检测等多种功能,为开发者和企业提供高性能高可用的人脸识别服务。可应用于智慧零售、智慧社区、在线娱乐、智慧楼宇、在线身份认证等多种应用场景,充分满足各行业客户的人脸属性识别及用户身份确认等需求。 【课程目标】 快速了解腾讯云人脸识别产品 了解腾讯云人
关于人脸识别这块,前些年不要太火,哪怕是到了今天依然火的一塌糊涂,什么玩意都要跟人脸识别搭个边,这东西应该只是人工智能的一个很小的部分,人脸识别光从字面上理解就是识别出人脸区域,其实背后真正的处理是拿到人脸区域图片,提取人脸特征值,再用这些特征值去做比对分析处理,识别出到底是谁,国内厂家也不少,比拼的就是准确度误报率,速度无非就是靠堆硬件来,什么VPU各种并行运算都堆上去,速度杠杠的,好多厂家都做到了几个毫秒的级别,估计很多厂家都是在开源的基础上加上了自家的算法,一直跑呀跑的整出了符合自家算法的人脸模型文件,比如百度的人脸识别模型文件,经过好几年的发展,越来越大越来越细越来越准。
How-Old.net 我想我不用介绍了,最近可谓是火了半边天了。 FACE++ 是北京旷视科技有限公司旗下的新型视觉服务平台,Face++平台通过提供云端API、离线SDK、以及面向用户的自主研发产品形式,将人脸识别技术广泛应用到互联网及移动应用场景中,人脸识别云计算平台市场前景广阔。 --摘自百度百科 我不太清楚微软的人脸识别的接口,但是对于国内的FACE++我还是稍微了解一点的。 根据百度百科的显示: 2013年10月16日,Face++ v3.0 版本上线,在这一版本中将人脸识别 API 免
人工智能时代快速来临,其中人脸识别是当前比较热门的技术,在国内也越来越多的运用,例如刷脸打卡,刷脸APP,身份识别,人脸门禁等。当前的人脸识别技术分为WEBAPI和SDK调用两种方式,WEBAPI需要实时联网,SDK调用可以离线使用。
4月13日结束的计算机视觉沙龙圆满落幕。本期沙龙从构建图像识别系统的方法切入,讲述腾讯云人脸识别、文字识别、人脸核身等技术能力原理与行业应用,为各位开发者带来了一场人工智能领域的技术开拓实践之旅。下面是范锦老师关于腾讯云人脸识别系统在传统行业的应用与落地的总结。
前段时间很多用户咨询我们TSINGSEE青犀视频全线产品能否实现人脸识别,那时候对人脸识别的研究我们也才处于起步状态,目前我们在EasyCVR视频上云网关上已经开始搭建的人脸识别的环境,本文就和大家分享一下。
前言 一个群友用琨君的美颜录制和讯飞离线人脸识别SDK做了一个demo,功能是录制视频,要求有美颜,并且能识别人脸并放置贴图。但是遇到一个问题: 录制过程能过进行人脸识别,也有美颜效果; 但是录制
近日、Bestsdk对其本站开发者SDK使用情况进行调查,整理了最受欢迎SDK数据评选,其中2016作为视频元年,我们见证了互联网又一个奇迹的诞生,视频直播从默默无闻到百家齐放,让无数的互联网用户与开
EasyCVR可支持多协议、多类型设备接入,包括国标GB28181、RTMP、RTSP/Onvif、海康SDK、大华SDK、海康Ehome等,目前还新增了其他的SDK接入,包括华为SDK、宇视SDK、乐橙SDK、萤石SDK。平台基于云边端一体化架构,支持海量视频资源的轻量化接入、汇聚与管理、视频分发等,可实现的视频功能包括:视频监控直播、云端录像、云存储、录像检索与回看、智能告警、平台级联、服务器集群、智能分析等。
近年来物联网技术快速发展,每一项技术革新,对事物发展都会有巨大促进作用。物联网技术在智能门禁上广泛应用,智能门禁发展如何,对智慧社区建设具有重要影响。在过去智能门禁人脸识别效率低,受网络稳定性影响大。离线式人脸识别技术出现,大大提高了人脸识别效率,及安全性。离线式人脸识别技术,为智慧社区发展提供了强大的活力。
AlphaGo拔掉网线也强大、iPhone X没有网络依旧可解锁,在国内虹软则免费开放了其支持离线的人脸识别技术,而且除了检测、跟踪、识别功能,现在也支持对年龄与性别的识别。 在杭州举行的虹软AI技术
相信大家对人脸身份认证已经司空见惯了,比如生活中的人脸支付、身份校验、金融认证等等,但是人脸识别技术面临着多种欺诈手段,如照片、换脸、面具等。如果被恶意复制,将会给个人、集体或者社会带来很大的麻烦和威胁。
前段时间有同学在DotNetGuide技术社区交流群提问:.NET做人脸识别功能有什么好的解决方案推荐的吗?今天大姚给大家推荐2款.NET开源、免费、跨平台、使用简单的人脸识别库,希望可以帮助到有需要的同学。
TencentYoutuyun(腾讯优图云)是腾讯云推出的一款图像识别和处理服务。它提供了各种功能强大的API,可以用于人脸检测、人脸对比、人脸验证、人脸比对、图片标签、身份证OCR等图像相关任务。该服务基于腾讯在人脸识别、图像识别等领域的技术积累,为开发者提供了快速、准确和可靠的图像处理解决方案。 在本篇文章中,我们将介绍如何使用TencentYoutuyun进行简单的图像处理任务。
在我最开始写文章的时候曾经写过一篇文章 基于 Java 实现的人脸识别功能,因为刚开始码字不知道写点什么,就简单弄了个人脸识别的Demo。
李凯周,天津大学计算机科学与技术专业硕士。现担任中科视拓研发部产品总监兼研发总监,负责研发算法部署、SDK化和数据分析管理工作,主导SeetaFace2的算法发布。
1.2 照片库标准 1)图片光线自然,无过度曝光; 2)人脸为正面,五官不存在遮挡; 3)人脸区域分辨率不低于 100*100,照片不大于5M
今天给大家带了的人脸识别非常简单,不需要大家了解TensorFlow,只需要对Python基本语法有一定了解。由于TensorFlow的火爆,把人脸识别再度推向我们的视线。像前段时间比较火的dee pfake,和人脸支付技术。虽然现阶段人脸识别仍有很大的争议性,但是它已经走进我们的视线当中了。很多小区在门禁系统中加入了人脸识别的功能,有些景区也添加了刷脸通道。但是对于技术的争议不是今天探讨的课题。下面开始我们的准备工作。
树莓派配置OpenCV,配置起来有点繁琐且耗时,但是调用百度智能云的人脸识别API来进行人脸识别是一个快速的解决方案
因工作需要手机端运用人脸识别打卡,本期教程人脸识别第三方平台为虹软科技,本文章讲解的是人脸识别RGB活体追踪技术,免费的功能很多可以自行搭配,希望在你看完本章课程有所收获。
人工智能技术的飞速发展给各行各业都带来了深远的影响,AI已被视为企业提升运营效能、应对市场竞争的必经之路。然而对于一些企业而言,让AI真正实现落地和应用,并且创造价值,仍是一件需要努力的事情。
说起人脸识别,相信大家都不会感到陌生,在我们平时的工作生活中,人脸打卡、刷脸支付等等已经是应用的非常广泛了,人脸识别也给我们的生活带来了极大的便利。
一、功能特点 支持的功能包括人脸识别、人脸比对、人脸搜索、活体检测等。 在线版还支持身份证、驾驶证、行驶证、银行卡等识别。 在线版的协议支持百度、旷视,离线版的支持百度,可定制。 除了支持X86架构,还支持嵌入式linux比如contex-A9、树莓派等。 每个功能的执行除了返回结果还返回执行用时时间。 多线程处理,通过type控制当前处理类型。 支持单张图片检索相似度最高的图片。 支持指定目录图片用来生成人脸特征值文件。 可设置等待处理图片队列中的数量。 每次执行都有成功或者失败的信号返回。 人脸搜索的返
人脸关键点检测是一个非常核心的算法业务,应用广泛。比如我们常用的换脸、换妆、人脸特效等2C应用中的功能,都需要先进行人脸关键点的检测,然后再进行其他的算法业务处理;在一些2B的业务场景中也都有涉及,如疲劳驾驶中对人脸姿态的估计,人脸识别前的人脸对齐等。
短视频SDK、直播SDK接入,超低占用空间,十秒大型场景仅100KB+ 精准人脸识别,动态捕捉最优人脸画面 无限炫酷特效,支持Android、IOS系统。
前两篇文章介绍了使用NodeJS官方提供的SDK进行快速开发,但是SDK毕竟是封装好的,省略了认证发起请求一系列操作,本篇文章不使用SDK进行开发,而是直接使用API进行开发。我们可以从零开始进行权限验证,然后再发起请求调用API实现前两篇文章实现的所有功能。
编辑导语 于2015年3月13日正式上线,目前一登已经服务了1400+个开发者,为386个Android应用,306个iOS应用提供身份验证服务,已经积累了超过141万用户;今年2月一登获得乐体创投2000万人民币的A轮融资,乐体创投是乐视体育旗下投资基金,一登将会在体育场景与乐视体育展开全面合作;资金将会用于场景落地的拓展及团队扩充。 追求用户体验提升多方合作场景落地 一登于去年底推出了SuperID2.0版。在产品性能方面,一登对产品进行了改进,提升了比对的准确性以及对不同光照环境的适应性,可以自动识别
作者:junerver 链接:https://www.jianshu.com/p/ca3a12bc4911 引言 人脸识别这件事想来早已经不新鲜,在 Android 中的应用也并不广泛,所以网上相关资料乏善可陈。但是在面对特殊的应用场景时,人脸识别的功能还是有一定的用处的,比如在考勤领域。 网上能搜到的很多示例比较多的是基于科大讯飞或者face++实现的,其中有一个示例做的非常漂亮,推荐大家看一看,SwFace:https://github.com/tony-Shx/Swface。该项目基于讯飞SDK实现
在人脸识别到以后,需要在实时视频上将所有人脸框绘制出来,一把来说识别人脸会有多种选择,一个是识别最大人脸,这种场景主要用于刷脸门禁,还有一种是识别所有人脸,这种场景主要用于人脸识别摄像机,就是将画面中的所有人脸识别出来发给服务器,人脸框的数据主要是四个参数,左上角和右下角的位置,也可以说是x、y、width、height,可能有些做的比较好的还有倾斜角度,这个意义不是很大,人脸识别的速度一般都是飞快的,就算你用学习上用的opencv做识别也是非常快的,基本上都是毫秒级的响应,主要的耗时操作在特征值的提取,所以一般要求能够响应每个通道每秒钟25帧-30帧的画面绘制+人脸框的绘制,当然人脸框的数据可能会有多个。
以往的人脸识别主要是包括人脸图像采集、人脸识别预处理、身份确认、身份查找等技术和系统。现在人脸识别已经慢慢延伸到了ADAS中的驾驶员检测、行人跟踪、甚至到了动态物体的跟踪。由此可以看出,人脸识别系统已经由简单的图像处理发展到了视频实时处理。而且算法已经由以前的Adaboots、PCA等传统的统计学方法转变为CNN、RCNN等深度学习及其变形的方法。现在也有相当一部分人开始研究3维人脸识别识别,这种项目目前也受到了学术界、工业界和国家的支持。 首先看看现在的研究现状。如上的发展趋势可以知道,现在的主要研究方向
如果你觉得好的话,不妨分享到朋友圈。 以往的人脸识别主要是包括人脸图像采集、人脸识别预处理、身份确认、身份查找等技术和系统。现在人脸识别已经慢慢延伸到了ADAS中的驾驶员检测、行人跟踪、甚至到了动态物体的跟踪。由此可以看出,人脸识别系统已经由简单的图像处理发展到了视频实时处理。而且算法已经由以前的Adaboots、PCA等传统的统计学方法转变为CNN、RCNN等深度学习及其变形的方法。现在也有相当一部分人开始研究3维人脸识别识别,这种项目目前也受到了学术界、工业界和国家的支持。 首先看看现在的研究现状。如
github源码:https://github.com/ageitgey/face_recognition#face-recognition 以往的人脸识别主要是包括人脸图像采集、人脸识别预处理、身份确认、身份查找等技术和系统。现在人脸识别已经慢慢延伸到了ADAS中的驾驶员检测、行人跟踪、甚至到了动态物体的跟踪。由此可以看出,人脸识别系统已经由简单的图像处理发展到了视频实时处理。而且算法已经由以前的Adaboots、PCA等传统的统计学方法转变为CNN、RCNN等深度学习及其变形的方法。现在也有相当一部分
以往的人脸识别主要是包括人脸图像采集、人脸识别预处理、身份确认、身份查找等技术和系统。现在人脸识别已经慢慢延伸到了ADAS中的驾驶员检测、行人跟踪、甚至到了动态物体的跟踪。由此可以看出,人脸识别系统已经由简单的图像处理发展到了视频实时处理。而且算法已经由以前的Adaboots、PCA等传统的统计学方法转变为CNN、RCNN等深度学习及其变形的方法。现在也有相当一部分人开始研究3维人脸识别识别,这种项目目前也受到了学术界、工业界和国家的支持。
说起这个人脸识别,还真有点缘分。记得逆天以前在学生时代参加创新大赛的时候,题目就是人脸识别打卡 解决别人替人打卡的问题,想想看,要是用微软的faceapi那还不是很容易实现的? 好了,不扯淡了,上次概
大家下午好,我是来自Camera360的唐雷,今天与大家一同分享Camera360 iOS端的音频优化。对于一款拍照软件,贴纸、美妆、特效现在已经成为一种标配,而我们最大的区别在于左下角的相册——它支持连拍,不需要拍照预览再去保存。从产品角度,我们最开始只是简单的拍照软件,拍风景再加上一些滤镜处理,到后面开始添加美妆、贴纸等功能,包括短视频也有尝试。
人脸识别流程包括人脸检测、人脸对齐、人脸识别等子任务,这里优先总结功能相对齐全的开源项目,再总结完成单个子任务的开源项目。本文主要关注方法较流行且提供源码的开源项目,忽略了仅提供SDK的。
自动人脸识别的经典流程分为三个步骤:人脸检测、面部特征点定位(又称Face Alignment人脸对齐)、特征提取与分类器设计。一般而言,狭义的人脸识别指的是"特征提取+分类器"两部分的算法研究。 在深度学习出现以前,人脸识别方法一般分为高维人工特征提取(例如:LBP,Gabor等)和降维两个步骤,代表性的降维方法有PCA, LDA等子空间学习方法和LPP等流行学习方法。在深度学习方法流行之后,代表性方法为从原始的图像空间直接学习判别性的人脸表示。 一般而言,人脸识别的研究历史可以分为三个
领取专属 10元无门槛券
手把手带您无忧上云