首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    图论--Dijkstra算法总结

    1.BFS转换Dijkstra: 对于一些路径的的问题及一些特殊的搜索题目,如果数据量很多但是处理边的复杂程度可以接受,就是说我们可以通过操作将原来要搜索的问题转化为Dijkstra能做的问题,这样可以提高效率,虽然介于BFS与Dijkstra之间有着A*,但是A*的题目我目前就看到了一类,第K短路,常用的还是转换。举个例子:在一个城堡中,有机关陷阱并且告知了其坐标,设城堡为一个二维平面,若这个二维有10000点,BFS最坏的情况是O(V^2)那么可能会超时,那么我们考虑,将每个点的作为节点建图,若有机关则他与上下左右都不连通,其他的每个点建立四联通边,那么时间复杂度为O(4*V),再加上Dijkstra为O(4*V+VlogV)可以将其解出,这个例子可能不太恰当,但是在这里给出解题的思想,BFS与Dijkstra同是单源最短路是可以转化的。

    03

    计算机视觉最新进展概览2021年11月7日到2021年11月13日

    由于动态环境中激光雷达点的稀疏性,点云中的三维目标跟踪仍然是一个具有挑战性的问题。在本文中,我们提出了一种voxel-to-BEV跟踪器,它可以显著提高稀疏三维点云的跟踪性能。具体来说,它由Siamese形状感知特征学习网络和voxel-to-BEV目标定位网络组成。Siamese形状感知特征学习网络可以获取目标的三维形状信息,学习目标的判别特征,从而识别出稀疏点云背景中的潜在目标。为此,我们首先进行模板特征嵌入,将模板的特征嵌入到潜在目标中,然后生成密集的三维形状来表征潜在目标的形状信息。对于跟踪目标的定位,体素-BEV目标定位网络以无锚的方式将目标的二维中心和z轴中心从稠密鸟瞰(稠密鸟瞰)特征地图上回归。具体来说,我们通过最大池化将体素化后的点云沿z轴压缩,得到稠密的BEV特征图,可以更有效地进行二维中心与z轴中心的回归。对KITTI和nuScenes数据集的广泛评价表明,我们的方法明显优于目前最先进的方法。

    02

    什么样的点可以称为三维点云的关键点?

    这个工作来自于中国香港科技大学和中国香港城市大学。我们知道,随着三维传感器以及相关扫描技术的进步,三维点云已经成为三维视觉领域内一项十分重要的数据形式。并且随着深度学习技术的发展,许多经典的点云深度学习处理方法被提出来。但是,现有的大多数方法都关注于点云的特征描述子学习。并且,在稠密的点云数据帧中,如果对所有点云都进行处理,将会带来巨大的计算和内存压力。针对这种问题,提取部分具有代表性的关键点则成为一种自然而且有效的策略。但是,什么样的点可以称为三维点云中的关键点呢?这个问题仍然是一个开放的、没有明确答案的问题。

    03

    用于实时 3D 重建的深度和法线的高速同测量

    物体的 3D 形状测量有许多应用领域,如机器人,3D接口、存档和复制等,而 3D 扫描仪已经商用。尽管如此,现存大多数 3D 形状测量系统捕获多个子帧,来测量单个深度图或单个点云,帧速率仅为 30 fps。这种方法在测量动态对象时,系统可能会因子帧之间的模糊或位移而导致噪声和误差。因此,需要单帧高速测量方法来处理移动或变形的目标,例如传送带上的产品、手势和非刚体。另一方面,在仅具有单帧的基于三角测量的方法中,测量的 3D 点云将是稀疏的,因为它难以获得密集的对应关系。而在使用飞行时间 (ToF)相机的情况下,由于散粒噪声,单帧深度的精度也相对较低。因此,为了实现对动态物体的密集、准确和高速的 3D 形状测量,不仅需要简单地在单帧中加速过程,还需要用别的方式提升测量精度和效率。

    03

    【深度估计】旷视科技|DeepLiDAR从一张彩色图像和一个稀疏深度图像生成室外场景之下的精确的稠密深度图

    在本文中,提出了一种深度学习架构,它可从一张彩色图像和一个稀疏深度图生成室外场景之下的精确的稠密深度。受室内深度补全的启发,网络把表面法线估计作为中间表示,以产生稠密深度,并可以端到端训练。该架构采用改进的编解码结构,有效地融合了密集的彩色图像和稀疏的激光雷达深度。为了解决室外特定的挑战,该模型还预测一个置信度掩膜,以处理由于遮挡而造成的前景边界附近混合的激光雷达信号,并整合来自彩色图像的估量和带有已学习的注意力图的曲面法线,以提升深度的精度,尤其是远距离区域。

    02
    领券