在互联网行业,缓存作为一种家喻户晓的技术,在各个系统中起着提效降压的作用。但是缓存的引入,也使得处理逻辑变得复杂,尤其在当下微服务大行其道,一个大型系统动辄十几个模块,多人共同开发、维护的情况下,不同开发人员的缓存设计都不尽相同,并且多与业务代码紧密耦合。在这个背景下,本文着重思考一种统一的方案,借鉴面向切面的编程思想(AOP),实现面向切面的缓存设计,将系统中的缓存设计与主业务逻辑剥离开来。
项目组目前开发的基于OEA框架的GIX4项目,本次功能已经完成得差不多了,本次迭代的目标主要是提升产品的性能。由于GIX4是C/S结构的应用程序,所以决定实现缓存模块来提升高繁数据访问的缓存。 本篇文章主要介绍了OEA框架中的缓存模块设计与一般的缓存有什么不同,如何在OEA框架中实现缓存模块。分为以下几个小节: 一般缓存介绍 OEA缓存目标 概要设计 通用缓存框架的详细设计 OEA中集成Cache的详细设计 小结 一般缓存介绍 网上介绍缓存的文章比较多,在这里我就挑
首先,我们要了解分布式系统的原理和应用,因为在高并发场景下,服务器集群往往会扮演着至关重要的角色。对于如何优化集群的负载均衡、数据存储以及网络通信等方面都需要有深入的了解。
在上一篇文章中[常见面试题之缓存雪崩、缓存穿透、缓存击穿],忘记讲了一个概念——缓存预热,所以在这篇文章补充一下,开一个好头,预热嘛~~~。
最近,有小伙伴私信我:冰哥,我最近出去面试,面试官问我如何设计缓存能让系统在百万级别流量下仍能平稳运行,我当时没回答上来。接着,面试官问我之前的项目是怎么使用缓存的,我说只是缓存了一些数据。当时确实想不到缓存还有哪些用处,估计这次面试是挂了。冰哥,你可以给我讲讲互联网大厂项目是怎么设计和使用缓存的吗?
从客户端到服务层,缓存的应用广泛而重要。通过合理的缓存设计,能够有效地提高系统的性能并降低延迟。
在分布式Web程序设计中,解决高并发以及内部解耦的关键技术离不开缓存和队列,而缓存角色类似计算机硬件中CPU的各级缓存。如今的业务规模稍大的互联网项目,即使在最初beta版的开发上,都会进行预留设计。但是在诸多应用场景里,也带来了某些高成本的技术问题,需要细致权衡。
一、缓存设计的核心要素 我们在应用中决定使用缓存时,通常需要进行详细的设计,因为设计缓存架构看似简单,实则不然,里面蕴含了很多深奥的原理,如果使用不当,则会造成很多生产事故甚至是服务雪崩之类的严重问题。 1、容量规划 缓存内容的大小 缓存内容的数量 淘汰策略 缓存的数据结构 每秒的读峰值 每秒的写峰值 2、性能优化 线程模型 预热方法 缓存分片 冷热数据的比例 3、高可用 复制模型 失效转移 持久策略 缓存重建 4、缓存监控 缓存服务监控 缓存容量监控 缓存请求监控 缓存响应时间监控 5、注意事项 是否有可
背景 我们在程序设计时,有一个极其重要的非功能性指标:性能,总是无时无刻不缠绕在程序员的脑海,尤其是我们开发的面向大众的Web服务,网络接口等程序。 高性能的程序可以使用更少的服务器资源提供同样规模的用户请求(成本低),也可以更快的响应用户请求(体验好)。 当然,高性能的程序设计也会更加复杂,开发也有更大难度。 这次的内容,我们面向高性能程序设计方向,来讲一讲其中最核心最重要的缓存。 希望能够帮助大家更好的理解缓存为王的含义,也能更好的利用缓存,设计出高性能的程序。 本文作者:michaeywang
今天我们聊聊CPU的指令缓存和数据缓存,即iCache和dCache,他俩就是离CPU最近的缓存了。
本文主要讲解了如何设计、部署、优化电商网站的缓存架构,包括缓存热点数据、高并发读、高并发写、高可用、缓存预热、缓存自动降级、缓存雪崩、缓存穿透、缓存失效等方面的内容。同时,还介绍了基于storm实时热点发现+毫秒级实时热点缓存负载均衡的缓存预热解决方案和基于随机过期时间的缓存失效解决方案。
这是我看过视频中最能解释的文字表达了 先说bean的创建过程:实例化->依赖注入->初始化 实例化之后会提前暴露到缓存,用于解决循环依赖问题。
1. 分层缓存架构设计2. 缓存带来的复杂度问题数据一致性缓存穿透缓存雪崩缓存高可用缓存热点3. 业界案例技术挑战Feed缓存架构图架构特点参考
看到好些人在写更新缓存数据代码时,先删除缓存,然后再更新数据库,而后续的操作会把数据再装载的缓存中。然而,这个是逻辑是错误的。试想,两个并发操作,一个是更新操作,另一个是查询操作,更新操作删除缓存后,查询操作没有命中缓存,先把老数据读出来后放到缓存中,然后更新操作更新了数据库。于是,在缓存中的数据还是老的数据,导致缓存中的数据是脏的,而且还一直这样脏下去了。 我不知道为什么这么多人用的都是这个逻辑,当我在微博上发了这个贴以后,我发现好些人给了好多非常复杂和诡异的方案,所以,我想写这篇文章说一下几个缓存更新的
看到好些人在写更新缓存数据代码时,先删除缓存,然后再更新数据库,而后续的操作会把数据再装载的缓存中。然而,这个是逻辑是错误的。试想,两个并发操作,一个是更新操作,另一个是查询操作,更新操作删除缓存后,查询操作没有命中缓存,先把老数据读出来后放到缓存中,然后更新操作更新了数据库。于是,在缓存中的数据还是老的数据,导致缓存中的数据是脏的,而且还一直这样脏下去了。
缓存,设计的初衷是为了减少繁重的IO操作,增加系统并发能力。不管是 CPU多级缓存,page cache,还是我们业务中熟悉的 redis 缓存,本质都是将有限的热点数据存储在一个存取更快的存储介质中。
作为前端开发,缓存是整天接触的概念,面试必问、工作中也频繁接触到,可能大家对缓存的 header 记的比较熟了,可是大家有没有思考过为什么 HTTP 的缓存控制要这么设计呢?
理想状态下的计算机存储设备应该是极为快速,容量大,价格便宜。但是目前的技术做不到。因此,一般计算机的存储结构如下图所示。图中自顶向下的设备是越来越便宜,但是速度却是越来越慢。
在FPGA数字图像处理中,行缓存的使用非常频繁,例如我们需要图像矩阵操作的时候就需要进行缓存,例如图像的均值滤波,中值滤波,高斯滤波以及sobel边缘查找等都需要行缓存设计。这里的重要性就不在赘述。
本系列文章将整理到我在GitHub上的《Java面试指南》仓库,更多精彩内容请到我的仓库里查看
这篇文章介绍了设计数据库表结构应该考虑的4个方面,还有优雅设计的6个原则,举了一个例子分享了我的设计思路,为了提高性能我们也要从多方面考虑缓存问题。
java面试(2)关于并发、超卖处理的思路
今天心血来潮,突然想起以前对于架构设计的理解,也是多年来总结的一个结果,分享给大家,欢迎拍砖!
第一点:对于调用方而言,调用同一个基础服务,要访问其RPC接口,究竟调用读服务,还是写服务,容易困惑。
缓存高并发问题是在高并发环境下,由于缓存系统无法快速响应或者处理大量的请求,导致系统性能下降,甚至出现系统崩溃的问题。
虽然现在只用到了 Redis 一个中间件,但设计个 middleware 包,会方便以后扩展添加其他中间件,如 Kafka 或 RocketMQ 等。
看到好些人在写更新缓存数据代码时,先删除缓存,然后再更新数据库,而后续的操作会把数据再装载到缓存中。然而,这个是逻辑是错误的。
承接上一篇《理解分布式系统中的缓存架构(上)》,介绍了大型分布式系统中缓存的相关理论,常见的缓存组件以及应用场景,本文主要介绍缓存架构设计常见问题以及解决方案,业界案例。
一个App,从根本上来说,就是对数据的处理,包括数据从哪里来、数据如何组织、数据怎么展示,从职责上划分就是:数据管理、数据加工、数据展示。相对应的也就有了三层架构:数据层、业务层、展示层。本文就先讲讲数据层的设计。
作者:李艳鹏,阿里资深技术专家!著有《可伸缩服务架构》,《分布式服务架构》等作品,在区块链,聚合支付,电商等领域有一定的积累!
互联网时代,业务系统的主要特点是用户多、请求量大。尤其在中国这样拥有庞大用户基数的环境下,不用说阿里巴巴、京东这类需要满足双十一大促时每秒几万甚至几十万订单的系统,即使是一些垂直领域的业务系统(如三甲医院的挂号系统)每天也有不小的访问量。
村上春树有本著名的小说名叫《当我谈跑步时我谈些什么》,讲述了一个人怎么样通过跑步去悟道出人生的很多哲理与感悟。而读书的价值,就是让我们可以将别人参悟出的道理化为己用,将别人走过的路化为充实自己的养料。
基本上来说,在分布式系统中最耗性能的地方就是最后端的数据库了。一般来说,只要小心维护好,数据库四种操作(select、update、insert 和 delete)中的三个写操作 insert、update 和 delete 不太会出现性能问题(insert 一般不会有性能问题,update 和 delete 一般会有主键,所以也不会太慢)。除非索引建得太多,而数据库里的数据又太多,这三个操作才会变慢。
这个题目我一直在考虑要不要写,因为有一天也许我们彼此会坐在一方小桌的两端,聊聊系统设计,而我这么做有泄题兜底之嫌。不过,考虑到不是所有的读者都会来 TubiTV 这座小庙面试,而这个方面的确是很多朋友的弱项,我就略说几句。 请听题:一个使用 rail(或者 django,或者 express,...)和 MySQL 做的 API 系统,最近流量从 6,000 RPM 激增至 20,000 RPM,整个系统的压力骤升,现在需要在应用层设计一套缓存方案来降低整个系统的负荷。要求是:缓存方案不能在 web 层(包
今天我们来聊聊缓存这个话题,看看在微服务环境下如何设计有效的多级缓存架构。主要涉及三方面内容:
"秒杀活动"、"抢红包"、"微博热搜"、"12306抢票"、"共享单车拉新"等都是高并发的典型业务场景,那么如何解决这些业务场景背后的难点问题呢? 秒杀系统中,QPS达到10万/s时,如何定位并解决业
对于web来说,是用户量和访问量支持项目技术的更迭和前进。随着服务用户提升。可能会出现一下的一些状况:
如图1所示,我们要设计n行同时输出,就串联n行。Line_buffer的大小设置由图像显示行的大小(图像宽度)决定。例如480*272 (480)。
详细设计,这里我们将详细的说梦x-engine 如何处理事务,并介绍x-engine的关键组件的详细设计,包含读路径,写路径,刷新和数据压缩处理,x-Engine应用MVCC 和2PL ,实现SI 快照隔离和RC 读已提交的隔离级别,以保证事务的ACID属性,同一个记录的不同版本已自增版本的ID为分离的元祖存储,每个传入的事务使用它看到的LSN作为快照,事务只读取小于自己LSN的最大版本的元祖,并为每个写入的元祖添加航所已规避写冲突。
我们知道,高并发代表着大流量,高并发系统设计的魅力就在于我们能够凭借自己的聪明才智设计巧妙的方案,从而抵抗巨大流量的冲击,带给用户更好的使用体验。这些方案好似能操纵流量,让流量更加平稳得被系统中的服务和组件处理。
目录介绍01.整体概述说明1.1 项目背景介绍1.2 遇到问题记录1.3 基础概念介绍1.4 设计目标1.5 产生收益分析02.市面存储方案2.1 缓存存储有哪些2.2 缓存策略有哪些2.3 常见存储方案2.4 市面存储方案说明2.5 存储方案的不足03.存储方案原理3.1 Sp存储原理分析3.2 MMKV存储原理分析3.3 LruCache考量分析3.4 DiskLru原理分析3.5 DataStore分析3.6 HashMap存储分析3.7 Sqlite存储分析3.8 使用存储的注意点3.9 各种数据存
让我们把目光先聚焦到即将破土而出的 Webpack 5 上,尽管国内外已经有抢鲜试水的尝试,其中也不乏@张立理的文章:Webpack 5 升级实验,讲述升级路径和体会,但是尚没发现从技术原理角度的设计解析。
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://louluan.blog.csdn.net/article/details/41408341
欢迎来到我们的API设计原则系列。在这个系列中,我们会探讨如何设计出最优性能和高度可扩展的API。接下来,我们将深入学习那些能够最大化提升API性能和扩展性的设计原则。通过运用这些原则,你将能够设计出能够提供卓越用户体验、应对日益增长的工作量,并推动系统成功发展的API。
缘起 在《服务读写分离(读服务,写服务),是否可行?》中,对背景做了交代,互联网架构设计上,数据库可以读写分离,服务能否读写分离呢? 下面是两种常见的“服务读写分离”架构: 一、单纯服务读写分离 如上
设计一个好用的缓存架构方案需要考虑多个方面,包括数据一致性、可用性、扩展性、性能以及成本。
缓存设计可谓老生常谈了,早些时候都是采用 memcache ,现在大家更多倾向使用 redis ,除了知晓常用的数据存储类型,结合业务场景有针对性选择,好像其他也没有什么大的难点。
领取专属 10元无门槛券
手把手带您无忧上云