天下武功,无坚不催,唯快不破。网络江湖,亦如是。本篇谈谈网络江湖的‘快’——网络加速。‘快’和‘稳’,是网络江湖永恒不变的两个话题。‘稳’,讲究的是网络的可靠性,后续另辟文章详谈。从ASIC、NPU到智能网卡到FPGA,从Linux内核到用户态DPDK转发,从软转到P4硬件流量卸载,可谓可编程转发技术演进过程中单纯设备个体层面的加速,这里也暂且不表,详细可参考网络设备的硬件形态选择初探,重点聊下整体网络业务层面的‘快’。
在网络使用过程中,我们经常会遇到需要提高访问速度或保护隐私的需求。IP代理和加速器都是常见的应对方案,但它们在工作原理和应用场景上存在一些区别。本文将为您深入探讨IP代理和加速器的异同,帮助您更好地理解它们的作用和适用情况,从而为您的网络体验提供有效的解决方案。
Imagination刚刚发布了有史以来最高性能的GPU IP——PowerVR图形处理器架构IMG A系列(IMG A-Series)。
梵文《僧柢律》记载,一昼夜为480万刹那,一刹那为一念,一念为0.018秒。一念,曾诞生无数惊世变革。人类发展,科技创新,皆由每一个伟大的念想而推动。信息革命带来互联网的高速发展,让每一念的放大效应逐渐升级,我们对于体验的诉求也逐渐具象为对速度的执念。
导语|随着出海业务的持续发展,各出海业务场景对于网络的要求越来越高。本课程针对出海业务的网络加速方案,进行腾讯云全球应用加速技术能力详解。全剧应用加速依赖全球节点之间的高速通道、转发集群及智能路由技术,实现各地用户的就近接入,通过高速通道直达源站区域,帮助业务解决全球用户访问卡顿或者延迟过高的问题。 一、4 腾讯云网络加速总体技术架构体 1 腾讯云云产品全景图 腾讯云实际上在整个的公有云市场当中,现在已经是头部的企业,有一个比较大的市场份额以及我们现在从整个公有云不同的方向。本次分享主要是从网络方向上为大
网络offload主要是指将原本在内核网络协议栈中进行的IP分片、TCP分段、重组、checksum校验等操作,转移到网卡硬件中进行,CPU的发包路径更短,消耗更低,提高处理性能。
随着出海业务的持续发展,各出海业务场景对于网络的要求越来越高。本课程针对出海业务的网络加速方案,进行腾讯云全球应用加速技术能力详解。全剧应用加速依赖全球节点之间的高速通道、转发集群及智能路由技术,实现各地用户的就近接入,通过高速通道直达源站区域,帮助业务解决全球用户访问卡顿或者延迟过高的问题。
2021年9月25日,由“科创中国”未来网络专业科技服务团指导,江苏省未来网络创新研究院、网络通信与安全紫金山实验室联合主办、SDNLAB社区承办的2021中国智能网卡研讨会中,多家机构谈到了智能网卡的网络加速实现,我们对此进行整理,以飨读者。
边缘安全加速平台 EO(Tencent cloud EdgeOne,下文简称为 EdgeOne)基于腾讯边缘计算节点提供加速和安全的解决方案,可以为电商与零售、金融服务、内容资讯与游戏等行业保驾护航,提升用户体验。EdgeOne 作为腾讯云下一代的 CDN ,提供域名解析、动静态智能加速、TCP/UDP 四层加速、DDoS/CC/Web/Bot 防护、边缘函数计算等一体化服务。
负载均衡:负载均衡技术能平衡服务器及群众所有的服务器和请求应用之间的通信负载,根据实时响应时间进行判断,将任务交由负载最轻的服务器来处理,以实现真正的智能通信管理和最佳的服务器群性能,从而使网站始终保持运行和保证其可访问性。
雾计算和边缘计算FEC(Fog and Edge Computing)通过填补云和物的差距以提供服务连续性来完成物联网中的云计算。本文将描述FEC的优势并讨论它如何实现这些优势。
GA(Global Accelerator)全球加速,是个让人觉得“既熟悉又陌生”的行业。
“熟悉”是指,GA 不是个新词汇,你几乎能在所有公有云厂商的产品介绍下,看见 GA 这项服务。做出海、游戏类业务的人都太熟悉 GA 了,没有它 ,基本的网络连通都将成为问题。
DPDK在专注数据面报文处理的同时,一直紧跟着网络发展的脉搏以开放的姿态融合不断涌现的各种新的网络设备。从最初的普通网卡,到集成虚拟化和交换功能的高级网卡,再到各种网络SoC(片上系统)设备,到现在最热的基于FPGA的Smart NIC,DPDK一直走在软件定义的网络技术发展的最前沿。近年来,数据中心异构化的趋势出现,基于云的数据中心如何使用加速器来进行存储,网络以及人工智能的加速,成为炙手可热的话题,在刚结束的APNET’18研讨会上,华为与腾讯都分享了技术方向与实践演进过程,基于Linux Foundation的开源项目,对这种架构的支持,在软件的持续性与高质量保证上至关重要。
新智元专栏 作者:UCSB谢源教授研究组 编辑:闻菲 【新智元导读】计算机体系结构顶会ISCA-18上周结束,图灵奖得主John Hennessy和David Patterson发表特邀报告,展望
近年来,神经网络在各种领域相比于传统算法有了极大的进步。在图像、视频、语音处理领域,各种各样的网络模型被提出,例如卷积神经网络、循环神经网络。训练较好的 CNN 模型把 ImageNet 数据集上 5 类顶尖图像的分类准确率从 73.8% 提升到了 84.7%,也靠其卓越的特征提取能力进一步提高了目标检测准确率。RNN 在语音识别领域取得了最新的词错率记录。总而言之,由于高度适应大量模式识别问题,神经网络已经成为许多人工智能应用的有力备选项。
大家为了能够拥有更加完美的上网体验,同样也是为了自己在玩游戏、看视频的时候没有任何的卡顿,在生活中一定要选择一个合适的网络加速器。在网络加速器的帮助之下能够使网络数据传输更加平稳,经历了长时间的发展以来cdn加速已经获得了很多人的认可。但是很多人使用cdn加速之后并不知道如何判断cdn已生效?其实判断方法很简单。
曾几何时,网络处理器是高性能的代名词。为数众多的核心,强大的转发能力,定制的总线拓扑,专用的的指令和微结构,许多优秀设计思想沿用至今。Tilera,Freescale,Netlogic,Cavium,Marvell各显神通。但是到了2018年,这些公司却大多被收购,新闻上也不见了他们的身影,倒是交换芯片时不时冒出一些新秀。
CDN全称:Content Delivery Network或Content Ddistribute Network,即内容分发网络。
自 2013 年 ALLIN 无线到今天,已经走过 10 个年头,淘宝终端统一网络库 AWCN (Ali Wireless Connection Network) 从淘内孵化,一路过来伴随着淘宝业务的发展,经历集团 IPv6 战役、协议升级演进等,逐步沉淀为阿里集团终端网络通用解决方案,是兼具高性能、多协议、可容灾、可观测的终端网络基础统一设施。
人人都在谈论SDN的后续发展,是时候将眼光从软件定义拉回到硬件重构了。这里的硬件重构不仅仅是网络架构的解耦,我们更需要关注设计范式在大变局下的应对-DSA。
作者 | 西西 编辑 | 陈彩娴 万万没想到,我居然会跟王海峰「一起过」520! 今天,「WAVE SUMMIT深度学习开发者峰会」在线召开,百度CTO王海峰发表演讲,表示「飞桨将助力人工智能变得越来越普惠」。 2019年,在第一届Wave Summit深度学习开发者峰会上,王海峰提出,深度学习具有很强的通用性,并具备标准化、自动化和模块化的工业大生产特征,推动人工智能进入工业大生产阶段。如今,三年过去,王海峰的说法得到了验证——如今深度学习的应用已经越来越广泛,遍地开花。 数据显示,截至2022年5月,飞
全球互联网由一个个自治域(AS,Autonomous system)通过对等互联(BGP,Border Gateway Protocol)来组成,作为基础设施的网络三十年来鲜有飞跃性的技术变革。全球AS运营方的格局如同现在的世界版图,由于种种原因变得互相独立且发展水平参差不齐,相对发达的地区网络建设较好、相对落后的地区网络建设欠佳。
导语:在过去的10-20年间,硬件技术取得了惊人的进步,但在高性能数据中心和高度受限的移动环境中却仍然不能“奢求”廉价的性能。很多人认为,硬件的下一个进步是将神经网络加速器添加到CPU + GPU集群中。然而,这可能会扼杀SoC的性能......
网站登录速度很慢的话,就会影响到网站的推广。现在很多人在建立网站的时候,为了增加网站的响应速度,都会使用cdn网络加速技术。声誉带来严重的影响。因此目前很多大的新网站都会通过一些网络技术来改善访问延迟的。那么cdn网络加速是如何实现的?Cdn适合哪些用户采用呢?
相信每一个关注开源的朋友,都会遇到一个棘手的问题,那就是 Github 的访问不够稳定。Github 就像薛定谔的猫一样,点开时,才知道能不能访问。运气不好的时候,可能等很久也加载不出来页面。运气好的时候,可以访问网站,但是有的图片又打不开。这样的体验性很差,也失去了学习的兴趣。
参考相关网站: http://cs231n.github.io/convolutional-networks/
当你在访问淘宝、京东准备剁手的时候,虽然进入页面的时候有很多的图片、很多的内容,但是加载起来却很快,让你剁手的动作如水般丝滑。嗖的一下好看的商品图片就出来了,嗖的一下就付款了。当然图片算是比较小的资源了,那些视频网站呢,每一个视频好几百M、好几个G,同时有好多的请求过来,就算服务器能抗住,带宽能跟的上吗?
大家好,我是冯迅,目前在欢聚时代(YY)主要负责音视频传输系统和音视频直播后端系统。今天想与大家分享的是YY的媒体实时传输系统与优化实践。YY是一家专注于打造专业直播平台与直播内容的互联网公司,业务主要涵盖了BGC、UGC与其背后的多样性玩法等领域。
1. CDN 简介 ---- CDN 的全称是 Content Delivery Network,即内容分发网络。 CDN 是构建在网络之上的内容分发网络。 CDN 使用户就近获取所需内容,降低网络拥
作者:Shaohui Lin、Rongrong Ji、Feiyue Huang 等
边缘计算包括跨越广泛位置和条件的系统组合,并支持各种用例。某个用例可能需要高功率GPU来实现人工智能(AI),而另一个用例则可能需要低功耗来延长电池寿命。设备的位置,例如微型边缘数据中心或壁挂式工业机柜,对硬件施加了不同的限制。
在深度学习的实践中,我们经常会使用GPU来加速模型的训练和推理过程。而在使用GPU时,可能会遇到一些错误和异常,其中一个常见的错误是 "RuntimeError: cudnn64_7.dll not found"。这篇文章将会详细讲解这个错误的原因以及解决方法。
5G的到来,对软件定义网络(SDN)和网络功能虚拟化(NFV)提出了更加迫切的需求。
导语:网络卡顿一直是影响游戏体验的一大因素,也是游戏开发者和游戏运维最头痛“顽疾”,它链条长,不可控因素多。腾讯云将网络质量作为基础产品质量的重要指标,腾讯云提供的公网IP,都是经历过同当地运营商进行多轮的路由调优后上线的,上线后还会关注网络质量进行持续调优。同时为了应对网络游戏中出现的各种网络覆盖的问题也推出了不少产品,这里除了老产品的介绍,也会带来“新玩法”。
在Simple TPU的设计和性能评估中,一个神经网络加速器的硬件雏形已经搭建完成了;在https://github.com/cea-wind/SimpleTPU上给出了相应的代码,和RTL仿真结果。在TPU中的脉动阵列及其实现和神经网络中的归一化和池化的硬件实现中,针对硬件实现中的关键模块也进行了仿真分析。但是,最终并没有给出一个可以实际运行的例子。这意味着,即使将这一部分代码应用到FPGA上,或者是实现在ASIC上后,也只有纸面性能却并不可用。
在如今信息化的时代,网络已经成为人们生活和工作不可或缺的一部分。而在网络应用中,ip代理池则是非常重要的一环,可以实现多种功能,如网络爬虫、数据采集、数据分析、数据挖掘、网络推广等等。而获取高质量的ip,则是建立属于自己的ip代理池的关键。
作者:重走此间路 编辑:闻菲 【新智元导读】单做算法无法挣钱,越来越多的公司都开始将核心算法芯片化争取更多市场和更大利益,一时间涌现出AI芯片无数。与CPU,GPU这样的通用芯片不同,终端AI芯片往往针对具体应用,能耗规格也千差万别。本文立足技术分析趋势,总结深度学习最有可能落地的5大主流终端市场——个人终端(手机,平板),监控,家庭,机器人和无人机,汽车,以及这些终端市场AI芯片的现状及未来。小标题以及着重部分是新智元转载时编辑增加,点击“阅读原文”了解更多。 近一年各种深度学习平台和硬件层出不穷,各种x
虽然很早听过CDN,但对其原理处于模糊的状态。如今国内访问量较高的网站、直播、视频平台,均使用CDN网络加速技术,小编所在项目有使用CDN技术,谨以此篇学习共勉。
EdgeOne 是腾讯云推出的一款综合型服务产品,旨在为全球客户提供一站式的整合型服务。作为下一代 CDN,它具备多重优势,包括安全、灵活、高效和敏捷等。
CPU的算力发展跟不上算力需求,所以人们考虑可以将一部分原本CPU承载的功能卸载到其他专用硬件上去处理(比如网卡),从而释放CPU算力,让其专注于处理关键的(创造经济效益的)用户业务。
人工智能和机器学习应用程序代表了嵌入式处理器的下一个重大市场机遇。然而,传统的处理解决方案并不是为了计算神经网络的工作负载,这些工作负载为许多应用程序提供了动力,因此需要新的架构来满足我们对智能日益增
随着互联网行业的快速发展,人们可以通过网络知道很多事情,上网早已成为了一件很普通的事情。近年来,随着网络技术的发达,也出现了不少智能虚拟网络,比如CDN加速服务,它可以让用户能够更好的获取内容。那么,CDN加速是如何使用的?需要备案吗?下面就让摩杜云来跟大家详细的介绍一下。
想必大部分开发者都知道,边缘加速是通过在全球范围内部署分布式边缘节点,将内容和应用程序缓存到离用户最近的位置,从而实现更快速、高效的内容传输和应用访问。而EdgeOne在此基础上,注重安全加固,通过提供安全防护机制和强化的安全策略,确保用户数据和应用的安全性,这种边缘加速与安全加固的结合为用户提供了更可靠、安全的网络加速服务。
来源:专知本文为论文介绍,建议阅读5分钟本文从分析图计算应用 和图神经网络的执行特征出发,对专用图处理加速架构进行了探索。 来自中科院计算所的严明玉博士论文,入选2022年度“CCF优秀博士学位论文奖”初评名单! https://www.ccf.org.cn/Focus/2022-12-08/781244.shtml 图计算应用和图神经网络是处理图数据的核心应用,被广泛应用于各个领 域。图数据处理应用特有的执行行为导致传统的通用架构无法高效地执行上述 应用。随着智能万物互联时代的来临,上述应用急需高效的硬件
服务流量切换并没有想象中那么简单,因为我们会碰到一个很大的问题,那就是DNS缓存。DNS是我们发起请求的第一步,如果DNS缓慢或错误解析的话,会严重影响读多写多系统的交互效果。
领取专属 10元无门槛券
手把手带您无忧上云