机器之心原创 作者:高静宜 3 月 28 日,腾讯云宣布推出深度学习平台 DI-X(Data Intelligence X),为机器学习、深度学习用户提供一站式服务,为其在 AI 领域的探索降低门槛并提供最流畅的体验。DI-X 平台基于腾讯云的大数据存储与处理能力,集成 Caffe、TensorFlow、Torch 主流深度学习框架,主打行云流水的拖拽式操作,具备强大的业内开源及腾讯自研算法库和模型库。DI-X 平台的推出是腾讯在 AI 领域长线布局中不可缺少的一环,也宣告腾讯云在 AI 布局的全面加速。
本文介绍了腾讯WeTest在AI自动化测试领域的探索,通过引入基于深度学习的人工智能技术,针对手游领域,腾讯WeTest推出了AI自动化测试系统,以解决手游测试中的人力成本高、游戏迭代慢、测试用例制作难等问题。该系统可以自动玩游戏、自动生成测试用例、自动比对结果、自动生成报告,为游戏开发者提供操作更加便捷高效的AI自动化测试方案,为游戏创造更大的价值。
做好自动化测试从来不件容易的事情,更何况是手游的自动化测试,相比传统的APP,手游画面纯OPENGL绘制无可识别控件,且界面动画多、随机性大。举个例子,拿新手引导来说,手游中新账号试玩会有一系列的新手引导,当新手引导过程通过之后,后面就不会再出现,但当账号升级到一定等级,又会出现新玩法的新手引导。且手游的版本迭代非常快,平均1-2周就会出一个版本,界面也经常发生变化,这些都给自动化测试带来很多障碍。
很多深度学习入门者或多或少对计算机的配置需求有一些疑惑。入门的硬性需求是什么,应该买什么样的电脑,什么样的显卡比较适合,自己的笔记本可以使用吗等等问题。这些问题之前我也有很多疑惑,现在总结了下,为大家稍微讲解一下所需要的配置,以及推荐清单。
关于深度学习人工智能落地,已经有有很多的解决方案,不论是电脑端、手机端还是嵌入式端,将已经训练好的神经网络权重在各个平台跑起来,应用起来才是最实在的。
本文介绍了DI-X这个一站式深度学习平台,它融合了深度学习框架、算法、模型训练、模型推理和协作,可以完成深度学习的闭环,直接对之前存储在COS上的数据快速的进行挖掘,而得到的模型又能够快速的部署,降低人工智能的门槛。
本文介绍了DI-X平台,它是一个一站式深度学习平台,致力于让中小企业快速、低成本地接入人工智能。DI-X平台通过使用腾讯云对象存储(COS)和云服务器(CVM)等基础设施,结合腾讯云的DI-X组件,为中小企业提供了快速部署、训练和预测一站式深度学习服务。它主要包含六边形数据节点、长方形算法节点和圆形模型节点,支持在线预测、离线训练和模型管理等功能。DI-X平台旨在降低人工智能的门槛,推动人工智能的普及,为中小企业提供快速、低成本接入人工智能的能力,让它们能够更好地创新和发展。
本文主要介绍了如何快速入门深度学习,从了解人工智能和机器学习开始,然后逐步深入介绍如何实现机器学习,包括选择算法、数据处理、模型训练和模型评估等。最后介绍了几个实际应用案例,包括使用机器学习进行疾病预测、智能驾驶和智能推荐系统等。
当我们辛苦收集数据、数据清洗、搭建环境、训练模型、模型评估测试后,终于可以应用到具体场景,但是,突然发现不知道怎么调用自己的模型,更不清楚怎么去部署模型!
屏幕显示正常,但是在打开网页或者进行跑深度学习程序的时候画面会发生一卡一下的情况,严重时出现类似于死机的情况。查看系统monitor并不现实显存和内存爆表,于是推断为nvidia显卡驱动不兼容的问题。
为深化和推进高校学生在云计算领域的学习,腾讯云计算联合腾讯高校合作、腾讯优图实验室发起「云+校园」腾讯云计算高校分享会系列活动,旨在通过业界经验分享与产品实践体验,帮助高校学生了解云计算与提升动手实践能力。同时,腾讯云计算还将进一步加强针对高校师生的高性能算力支持,并持续投入优质云计算学习资源赋能课程建设与人才培养。 钟灵水木地,毓秀清华园。5月17日,「云+校园」腾讯云计算高校分享会首站来到清华学府,走进软件学院深度学习课堂。来自腾讯优图实验室的专家为近百位研究生和本科生介绍了深度学习推理框架 TN
GPU 云服务器(GPU Cloud Computing,GPU)是提供 GPU 算力的弹性计算服务,具有超强的并行计算能力,作为 IaaS 层的尖兵利器,服务于深度学习训练、科学计算、图形图像处理、视频编解码等场景。腾讯云随时提供触手可得的算力,有效缓解您的计算压力,提升业务效率与竞争力。
随着端算力的提升,云主要的作用一定会回归它的本质,就是存储。 今年11月,阅面科技与英特尔发布“繁星”系列产品,集成了传感器、ISP,并在Intel Movidius芯片100 GIGA flops的算力帮助下集成了嵌入式深度学习视觉算法。 在这次发布会后不久,镁客君和阅面科技CEO赵京雷就“繁星”背后的算法、以及未来端和云的发展聊了一番。 “繁星的一大特点是把高精度的人脸识别算法放到了端上。我们指的最高精度的模型,以前很多人认为这个只能部署在云上。”赵京雷总结道。 图 | 繁星AI智能芯片模块 图 | 繁
12月18日,深圳 - 腾讯大数据宣布推出面向机器学习的第三代高性能计算平台——Angel,并预计于2017年一季度开放其源代码,鼓励业界工程师、学者和技术人员大规模学习使用,激发机器学习领域的更多创新应用与良好生态发展。 腾讯12月18日在“腾讯大数据技术峰会暨KDD China技术峰会”上宣布这一消息,腾讯副总裁姚星先生,及腾讯数据平台部总经理、首席数据专家蒋杰先生出席了峰会并发表演讲。 姚星表示:“人工智能的发展在过去60年中几经沉浮,今年终于发出了璀璨光芒,很大的原因就是跟云计算和大数据有
作者:丁一帆 https://www.zhihu.com/question/310387269/answer/926638382
「腾讯云大学」联合「腾讯云最具价值专家(TVP)团队」在疫情期间为开发者特推出了免费的腾讯云TVP直播课!让您足不出户,即可享受优质的学习资源,就能完成开发技能升级。
2022年11月30日,腾讯全球数字生态大会上,发布了和知名分析机构IDC合作的《IDC 2022年云上产品演进趋势白皮书》。大数据作为重点赛道之一,在白皮书里面也传递了腾讯云对这个赛道发展趋势的判断:云原生,数据治理,数智融合,隐私计算。
导读 / Introduction 5月10日,中央广播电视总台《经济半小时》栏目播出《软件开源里的中国声音》特别节目,点赞了腾讯工程师们在技术开放和软件开源上所做的努力。目前腾讯已经开源了120+个项目,有数千位贡献者, Star 数超过35万,开源贡献居于全球前列。 作为腾讯的明星开源项目,Angel机器学习平台能够支持万亿级维度的机器学习全流程开发,广泛接入了大数据和AI生态,如Spark、Pytorch等,大幅降低了海量数据规模下的机器学习开发门槛。 点击观看视频: 此次节目中重点介绍的就是
【新智元导读】12月18日腾讯大数据宣布推出面向机器学习的第三代高性能计算平台——Angel,并预计于2017年一季度开放其源代码。腾讯首席执行官马化腾在朋友圈发文称:“AI与大数据将成为未来各领域的标配,期待更多业界同行一起开源携手互助。”将于2017年开源的Angel是对标 Spark 的机器学习计算平台。蒋杰说,以前Spark能跑的,现在Angel快几十倍;以前Spark跑不了的,Angel也能轻松跑出来。本文内容包括新智元对蒋杰的专访,以及蒋杰在大会上演讲的文字实录和PPT。 12月18日,腾讯大数
Docker是一种容器技术,它就像一个沙盒把应用程序隔离开来,不管有没有遇到过你至少听到某些应用程序不能兼容,最常见的就是升级某个系统,老版本跟新版本不能兼容,必须把老版本完全卸载掉。比如说oracle服务,如果把oracle安装到物理主机上,如果需要升级那将会比较痛苦。再比如说新手学习各种软件,apache、mysql、Python搞的电脑上乱七八糟的环境,想要重新安装都很痛苦。
注:本文转载自公众号腾讯云。 你或许也有过这样的想法... 出门来不及的时候,要是有十双手一起收拾就好了 这么多人,为什么没有100条队 今天这工作量,需要1000个我一起才做得完 其实,你的电脑每一秒都在面对这样的难题。 为了把你眼前的图像显示出来,它需要给几百万个像素点,算出每秒几十帧的像素值。 一秒钟就是几亿次并行计算。 这还只是把画面显示出来。如果是渲染一段3D动画,计算量就更大了。 能同时完成这么多计算却依然不卡,靠的就是GPU(图形处理器)。 相对于CPU,它拥有大量的算术逻辑单元,
作者薛磊,腾讯高级软件工程师,服务于腾讯星辰算力平台,是Kubeflow的maintainer以及Volcano、 Kubernetes等其他开源项目的贡献者,致力于通过开源项目以及云原生架构改进AI基础架构,提升算法工程师以及整体AI研发的工程效率。
简介 近日重温了《深度学习在腾讯的平台化和应用实践(全)》,感兴趣可以在这里阅读 https://zhuanlan.zhihu.com/p/21852266 ,里面介绍了腾讯在深度学习平台基础架构上细致的工作,本人在2016 C++及系统软件大会上也分享了小米cloud machine learning平台的细节,在此给大家总结和对比一下。 腾讯Mariana平台 在前面提到的文章中,已经详细介绍了腾讯深度学习平台,也就是Mariana项目的实现细节了,这是一个真正意义上的平台。在参考文献上也体现出来,腾讯
【新智元导读】OpenAI 昨天在博客发文,结合实例,介绍了 OpenAI 进行深度学习研究时采用的基础设施配置,并且提供了相关开源代码。文章激起了很多反响,其中也有负面评论,比如有用户在 Hacker News 指出,OpenAI 博文只提供了“训练”部分的细节,称不“深度学习基础设施”。不过,相对于软硬件开源,OpenAI 从另一个侧面,对深度学习模型的实际部署提供了帮助。下文是对 OpenAI 官方博文的编译。 深度学习是一门实践科学,而拥有好的基础设施对项目进展有着事半功倍的效果。所幸,如今的开源生
本月初,腾讯云大数据联合团队以98.8秒的成绩完成100TB数据排序,摘得2016 Sort Benchmark全球排序竞赛冠军。在这次竞赛中,腾讯云数智分布式计算平台分别夺得Sort Benchmark大赛GraySort和Minutesort的冠军,创造了四项世界纪录。(了解详情请点击《全球计算奥运冠军花落腾讯,腾讯云数智打破4项世界纪录》) 此次参赛的腾讯云大数据联合团队,是由腾讯云存储产品中心、腾讯数据平台部组成,团队成员在大数据技术和应用管理上都有着非常丰富的实践经验,尤其是腾讯数据平台部一直在管
首先验证一下实例的python环境,python环境验证为3.8版本python。适合当前实验。
上周,腾讯云大数据联合团队以98.8秒的成绩完成100TB数据排序,摘得2016 Sort Benchmark全球排序竞赛冠军。在这次竞赛中,腾讯云数智分布式计算平台分别夺得Sort Benchmark大赛GraySort和Minutesort的冠军,创造了四项世界纪录。(了解详情请点击《腾讯打破2016 Sort Benchmark 4项记录,98.8秒完成100TB数据排序》) 此次参赛的腾讯云大数据联合团队,是由腾讯云存储产品中心、腾讯数据平台部组成,团队成员在大数据技术和应用管理上都有着非常丰富的实
为了让大家了解不同应用场景下的GPU云服务器选型 我们邀请腾讯云大茹姐姐创作了这篇深度好文 要看完呐~~↓↓↓ 随着云计算、大数据和人工智能技术的飞速发展,算法越来越复杂,待处理的数据量呈指数级增长,当前的X86处理器的数据处理速度,已经不足以满足深度学习、视频转码的海量数据处理需求,大数据时代对计算速度提出了更高的要求,至此,GPU处理器应运而生。 腾讯云根据GPU的应用场景,已推出多款GPU实例,如GN10X/GN10Xp(NVIDIA Tesla V100)、GN7(NVIDIA Tesla
腾讯云异构计算实例搭载GPU、FPGA等异构硬件,具有实时高速的并行计算和浮点计算能力,适合于深度学习、科学计算、视频编解码和图形工作站等高性能应用,InstanceTypes分享腾讯云NVIDIA GPU实例配置性能包括CPU、内存、使用场景及购买注意事项等信息:
一、概述:通用 == 低效 作为通用处理器,CPU (Central Processing Unit) 是计算机中不可或缺的计算核心,结合指令集,完成日常工作中多种多样的计算和处理任务。然而近年来,CPU在计算平台领域一统天下的步伐走的并不顺利,可归因于两个方面,即自身约束和需求转移。 (1)自身约束又包含两方面,即半导体工艺,和存储带宽瓶颈。 一方面,当半导体的工艺制程走到7nm后,已逼近物理极限,摩尔定律逐渐失效,导致CPU不再能像以前一样享受工艺提升带来的红利:通过更高的工艺,在相同面积下,增加更
来了?鹅厂小编们等你很久了!咱们闲话少叙,今天,10位小编携手为你奉上10份超级大礼: 书籍、技术教程、鹅厂公仔、腾讯云代金券……每位朋友都可以免!费!参与抽奖! 01 技术书籍 本次奖池书单涵盖小程序开发、数据分析、人工智能、编程等多个领域。一份技术人获益的典藏书单,强烈推荐,借助书籍希望大家能够由浅入深、循序渐进的学习新知,事半功倍,少走弯路。赠送书单明细请翻至文末查看哦~ 02 实战教程 鹅厂资深数据库专家录制的数据库实战视频课程,教你从青铜到王者学习数据库;小程序云开发教程,含源码,教你7天打造流
摘要 虽然TensorFlow已经成为了实现深度学习算法最受欢迎的工具之一,但要将其应用于海量数据上仍然存在效率问题。为了提高TensorFlow的运行速度,我们将TensorFlow并行化的跑在了Kubernetes集群上。在本次讲座中将介绍如何使用Kubernetes管理可使用CPU和GPU的TensorFlow集群。 嘉宾演讲视频及PPT回顾:http://t.cn/RnVeXX1 我今天的分享,第一个先介绍下什么是深度学习,有一个什么样的历史,包括它现在的一些现状;第二个是TaaS的简介;最后是分布
来了?鹅厂小编们等你很久了!咱们闲话少叙,今天,10位小编携手为你奉上10份超级大礼:
之前一直使用Google Colab跑实验,因为实验的规模不大,配合Google Drive用起来就很舒服,但是最近要系统地进行实验,规模一下子上来了,Colab经常在代码没跑完就达到额度上限,于是自己租了个GPU服务器,Ubuntu子系统,没有图形化界面,所以用起来还不太熟练,这里简单记录一下一些关键点。
本月中旬,腾讯大数据在“腾讯大数据技术峰会暨KDD China技术峰会”上宣布推出面向机器学习的第三代高性能计算平台——Angel,并预计于2017年第一季度开放其源代码,鼓励业界工程师、学者和技术人员大规模学习使用,激发机器学习领域的更多创新应用与良好生态发展。 那么,Angel是如何“以己之翼、聚众之力”,如何在蓬勃发展的机器学习浪潮中展现自己的光辉,请跟随我们,走进Angel。 Angel简介 Angel是腾讯大数据部门第三代的计算平台,使用Java和Scala语言开发,面向机器学习的高性能分布式计算
不久前,BAT已争相加入“大数据国家队”!在近日国家发改委公布的国家工程实验室名单中,其中百度、阿里巴巴、腾讯均经发改委批复,参与共建多个国家工程实验室。 国家工程实验室(国家发展和改革委员会主管)属国家科技创新体系的重要组成部分,是依托企业、转制科研机构、科研院所或高校等设立的研究开发实体。 据波士顿咨询报告,云计算、大数据、人工智能等新技术未来能为中国制造业带来6万亿的额外附加值。近年来,BAT更是在以上领域频频布局,可见大数据未来已来。 百度 深度学习技术及应用国家工程实验室 近日,百度宣布国家发
高策,腾讯高级工程师,Kubeflow 社区训练和自动机器学习工作组 Tech Lead,负责腾讯云 TKE 在 AI 场景的研发和支持工作。 7 月 9 日,GOTC 2021 全球开源技术峰会上海站与 WAIC 世界人工智能大会共同举办,峰会聚焦 AI 与云原生两大以开源驱动的前沿技术领域,邀请国家级研究机构与顶级互联网公司的一线技术专家,为参会的开发者和技术爱好者带来了最硬的行业技术干货,提供了一个难得的技术交流平台。 在本次会议上,腾讯云高级工程师高策进行了题为“公有云上构建云原生 AI 平台的
1 背景 随着以数据中心为核心的云计算的兴起,传统计算领域不断被蚕食。各大公司纷纷出手,构成形如战国七雄的乱战格局:Amazon、Google、Facebook、Microsoft、阿里、腾讯、百度。 在吃瓜群众眼中,云计算体大量足,实力强劲,于是,以机器学习、物联网、视频、科学计算、金融分析等大数据制造者为首的大量任务在云端构成了长长的计算队列。思科云指数报告指出,预计到2020 年,全球 92% 的数据流量将来自云计算,将从2015 年的每年 3.9 ZB 增长 3.7 倍,到 2020 年达到 14
来了?鹅厂小编们等你很久了!咱们闲话少叙,今天,10位小编携手为你奉上10份超级大礼: 书籍、技术教程、鹅厂公仔、腾讯云代金券……每位朋友都可以免!费!参与抽奖! 01 技术书籍 本次奖池涵盖数据分析、人工智能、编程等多个领域。一份技术人获益的典藏书单,强烈推荐,借助书籍希望大家能够由浅入深、循序渐进的学习新知,事半功倍,少走弯路。赠送书单明细请翻至文末查看哦~ 02 实战教程 鹅厂资深数据库专家录制的数据库实战视频课程,教你从青铜到王者学习数据库;小程序云开发教程,含源码,教你7天打造流量过亿的小程序,
本文介绍了异构计算在云计算领域的发展现状、技术挑战和应用前景,并分析了FPGA在云计算加速中的优势和挑战,同时探讨了FPGA在云服务中的具体应用案例。
本文介绍了如何通过腾讯云技术社区快速入门云计算、人工智能、数据库、前端、Android、数据可视化等领域的技术干货。通过阅读本文,读者可以了解到如何快速掌握云计算、人工智能、数据库、前端、Android、数据可视化等领域的技术干货。
本课程主要面向人群:(1)对强化学习感兴趣的人士,(2)对强化学习有一定了解的人士。主要内容:全景式介绍强化学习模型的算法。
作者:朱建平 腾讯云技术总监,腾讯 TEG 架构平台部专家工程师 1.关于人工智能的若干个错误认知 工智能是 AI 工程师的事情,跟我没有什么关系 大数据和机器学习( AI ) 是解决问
在深度学习领域的实践中,一般会涉及到向量化处理的数据,如图像、文本、音频等,这些数据的存储和检索对于许多深度学习任务至关重要。传统的关系型数据库和NoSQL数据库在存储和检索这类大规模向量数据时,通常不能满足高效、精确的查询需求。因此,如何优化向量数据的存储和检索,成为了当前深度学习场景下需要解决的重要问题。
2023 年,科技圈的“顶流”莫过于大模型。自 ChatGPT 的问世拉开大模型与生成式 AI 产业的发展序幕后,国内大模型快速跟进,已完成从技术到产品、再到商业的阶段跨越,并深入垂直行业领域。
MiniTest小程序云测 是一套由微信测试团队自主研发的、为小程序提供自动化测试的服务。目前MiniTest小程序云测开发者工具插件已开放公测,其特色功能如下: 1.零代码接入智能Monkey测试 MiniTest为用户提供自动跑查开发版、体验版、线上版小程序Monkey测试功能,在跑测同时,平台还会自动检测黑白屏,JsError,Crash异常情况。当发现这些异常情况时,测试结果将标记为失败,并在报告中提供相关信息帮助用户排查问题。 普通Monkey测试是采用 随机点击 的方式来测试小程序的稳定性(如
领取专属 10元无门槛券
手把手带您无忧上云