作者:朱建平 腾讯云技术总监,腾讯 TEG 架构平台部专家工程师 1.关于人工智能的若干个错误认知 工智能是 AI 工程师的事情,跟我没有什么关系 大数据和机器学习( AI ) 是解决问
机器之心原创 作者:高静宜 3 月 28 日,腾讯云宣布推出深度学习平台 DI-X(Data Intelligence X),为机器学习、深度学习用户提供一站式服务,为其在 AI 领域的探索降低门槛并提供最流畅的体验。DI-X 平台基于腾讯云的大数据存储与处理能力,集成 Caffe、TensorFlow、Torch 主流深度学习框架,主打行云流水的拖拽式操作,具备强大的业内开源及腾讯自研算法库和模型库。DI-X 平台的推出是腾讯在 AI 领域长线布局中不可缺少的一环,也宣告腾讯云在 AI 布局的全面加速。
“产品使用攻略”、“上云技术实践” 有奖征集啦~ 图片案例名称案例简介使用 Windows GPU 云服务器搭建深度学习环境介绍如何使用 Windows GPU 云服务器,通过云服务器控制台从零开始手动搭建基于 PyTorch 和 TensorFlow 的深度学习环境。使用 Docker 安装 TensorFlow 并设置 GPU/CPU 支持介绍如何使用 Docker 安装 TensorFlow,并在容器中下载及运行支持 GPU/CPU 的 TensorFlow 镜像。使用 GPU 云服务器训练 ViT
为了让大家了解不同应用场景下的GPU云服务器选型 我们邀请腾讯云大茹姐姐创作了这篇深度好文 要看完呐~~↓↓↓ 随着云计算、大数据和人工智能技术的飞速发展,算法越来越复杂,待处理的数据量呈指数级增长,当前的X86处理器的数据处理速度,已经不足以满足深度学习、视频转码的海量数据处理需求,大数据时代对计算速度提出了更高的要求,至此,GPU处理器应运而生。 腾讯云根据GPU的应用场景,已推出多款GPU实例,如GN10X/GN10Xp(NVIDIA Tesla V100)、GN7(NVIDIA Tesla
为深化和推进高校学生在云计算领域的学习,腾讯云计算联合腾讯高校合作、腾讯优图实验室发起「云+校园」腾讯云计算高校分享会系列活动,旨在通过业界经验分享与产品实践体验,帮助高校学生了解云计算与提升动手实践能力。同时,腾讯云计算还将进一步加强针对高校师生的高性能算力支持,并持续投入优质云计算学习资源赋能课程建设与人才培养。 钟灵水木地,毓秀清华园。5月17日,「云+校园」腾讯云计算高校分享会首站来到清华学府,走进软件学院深度学习课堂。来自腾讯优图实验室的专家为近百位研究生和本科生介绍了深度学习推理框架 TN
本教程将介绍如何使用腾讯云的GPU云服务器、对象存储、云原生大数据平台等产品来搭建Transformer模型的训练环境。包括开通云服务、配置环境、代码实现等内容。
高策,腾讯高级工程师,Kubeflow 社区训练和自动机器学习工作组 Tech Lead,负责腾讯云 TKE 在 AI 场景的研发和支持工作。 7 月 9 日,GOTC 2021 全球开源技术峰会上海站与 WAIC 世界人工智能大会共同举办,峰会聚焦 AI 与云原生两大以开源驱动的前沿技术领域,邀请国家级研究机构与顶级互联网公司的一线技术专家,为参会的开发者和技术爱好者带来了最硬的行业技术干货,提供了一个难得的技术交流平台。 在本次会议上,腾讯云高级工程师高策进行了题为“公有云上构建云原生 AI 平台的
腾讯云提供了多种产品和服务,可以满足大型语言模型的开发需求,以下是一些常用的产品和服务:
本文介绍了DI-X这个一站式深度学习平台,它融合了深度学习框架、算法、模型训练、模型推理和协作,可以完成深度学习的闭环,直接对之前存储在COS上的数据快速的进行挖掘,而得到的模型又能够快速的部署,降低人工智能的门槛。
本文介绍了DI-X平台,它是一个一站式深度学习平台,致力于让中小企业快速、低成本地接入人工智能。DI-X平台通过使用腾讯云对象存储(COS)和云服务器(CVM)等基础设施,结合腾讯云的DI-X组件,为中小企业提供了快速部署、训练和预测一站式深度学习服务。它主要包含六边形数据节点、长方形算法节点和圆形模型节点,支持在线预测、离线训练和模型管理等功能。DI-X平台旨在降低人工智能的门槛,推动人工智能的普及,为中小企业提供快速、低成本接入人工智能的能力,让它们能够更好地创新和发展。
“我们平时的实验学习都是在本机的Jupyter服务下的notebook完成,咱们云可以搭建嘛?” —— by 小云同学
GPU服务器,简单来说,GPU服务器是基于GPU的应用于视频编解码、深度学习、科学计算等多种场景的快速、稳定、弹性的计算服务,我们提供和标准云服务器一致的管理方式。出色的图形处理能力和高性能计算能力提供极致计算性能,有效解放计算压力,提升产品的计算处理效率与竞争力。
随着深度学习技术的飞速发展,各种基于深度学习的人工智能应用层出不穷。在这些应用中,人脸识别是一个非常典型且广泛应用的场景。本文将分享基于GPU进行人脸识别模型训练的实践经验。
我们知道在人脸特效里面用到了很多的 AI 技术,其实 AI 早已经走入我们的生活,给我们生活带来很多的变化,大家可以想一下在生活中遇到的使用AI的场景。
Horovod是优步跨多台机器的分布式训练框架,现已加入开源计划LF Deep Learning Foundation。
LF深度学习基金会发布首个公开版的Acumos AI,这是一个用于训练和部署AI模型的开源框架和平台。
对于各种热门的机器学习、深度学习课程,你一定了解过不少了。 但上课之后,如何把学出来的这些新方法用在你的工作项目?如何让你的移动应用也能具备机器学习、深度学习的能力? 具体做这事的话: 你是该自己训练模型,还是用现成的模型? 你是该用自己的电脑训练,还是在云端上训练? 你是需要深度学习部署在云端,还是移动端? 本文将对这些问题作出具体的解答。 作者 | Matthijs Hollemans 编译 | AI100 面对时下大热的机器学习和深度学习,是时候来加强你的移动应用了! 可你有什么好主意吗?
计算加速套件 TACO Kit 简介 从推荐系统、自动驾驶到聊天机器人,AI 正逐渐渗透到我们生活的每个角落。每一次我们使用这些应用的时候,应用背后都有训练好的神经网络模型在运行一个叫做“推理”的过程。无所不在的应用,意味着推理可能会被部署在云、边、端等各种可能的硬件终端上。不同硬件所带来的异质性,不可避免地给软件设计提出了巨大的挑战。开发者经常需要在不同目标设备上开发推理应用,并使用不同平台、各自独立的软件栈及依赖。 为了应对上述软件研发的挑战,腾讯发布了 TACO Kit(Tencent Acceler
AI科技评论按:7月13日,网易在杭州举办的网易云创大会上带来多款人工智能事业部研发的产品。此次,也是网易人工智能事业部第一次出现在大众面前,这个事业部是否和阿里人工智能实验室,腾讯人工智能实验室一样神秘呢? 最近可能大家刷朋友圈经常会看到这样的标题,「BAT如何布局人工智能产业」,「BAT如何抢夺AI领域人才」,「BAT人工智能实验室大揭底」等等。不可否认,BAT是国内互联网科技领域三巨头,他们各自成立的人工智能实验室的架构、研究方向及研究领域都深受外界关注。其实除了百度,阿里,腾讯三家以外还有一家互联网
1999年,NVIDIA 公司发明了GPU(Graphics Processing Unit,图形处理器),优异的图形处理表现让它艳惊四座。
自从2006年深度学习开始展露头角,到2012年前后彻底爆发,再到现在算法已经趋于成熟(某种极限),那么有一些问题已经比较明朗了。
腾讯云异构计算实例搭载GPU、FPGA等异构硬件,具有实时高速的并行计算和浮点计算能力,适合于深度学习、科学计算、视频编解码和图形工作站等高性能应用,InstanceTypes分享腾讯云NVIDIA GPU实例配置性能包括CPU、内存、使用场景及购买注意事项等信息:
答案显然是否定的。一方面,人工智能技术的应用越来越广泛,应用场景不断扩大,身边的就如资讯推送、网购推荐、叫车出行、在线教育等。
在 Forrester 最新发布的《Now Tech: Predictive Analytics And Machine Learning In China, Q3 2020》报告中,腾讯云在国内众多预测分析和机器学习领域厂商中遥遥领先,跃居第一阵营。 Forrester Now Tech是 Forrester 机构在中国乃至全球范围内具有影响力最大、市场认可度最高的报告系列之一,旨在为企业 IT 决策、产品选型等提供基于市场规模、产品功能维度的价值参考。 作为中国最大的人工智能服务提供商,腾讯云在机器学习
腾讯云高性能应用服务 HAI 是为开发者量身打造的澎湃算力平台。无需复杂配置,便可享受即开即用的GPU云服务体验。在 HAI 中,根据应用智能匹配并推选出最适合的GPU算力资源,以确保您在数据科学、LLM、AI作画等高性能应用中获得最佳性价比。
最近在研究多张照片转3D模型想过的技术。NeRF是目前最主流的方式之一。本文主要在腾讯云CVM云服务器上实操Nerfstudio的安装及example运行。过程中遇到了很多坑,希望本篇文章能帮助大家不再遇到相关的安装、配置、运维的坑,顺利在应用层上纵横驰骋。
大家好,我是腾讯云开发者社区的 Front_Yue,本篇文章将带各位小伙伴如何基于腾讯云高性能应用服务(HAI)使用StableDiffusion的WebUI,轻松实现高效、便捷的AI图像生成。
深度学习已经改变了很多行业,深度学习工程师已经是不折不扣的高薪职业,但是也有越来越内卷的趋势,以前只要求会训练模型就可以了,现在多数深度学习工程师岗位都要求掌握模型训练与模型部署。
今天腾讯云正式上线第八代云服务器标准型实例 S8和内存型实例M8。基于自研服务器的高密设计与硬件升级,搭载第五代英特尔®至强®可扩展处理器的腾讯云实例S8/M8,计算性能大幅提升,对比腾讯云云服务器上代实例,整机性能提升115%,单核性能提升28%[1],内存带宽提升75%。 内置英特尔® 高级矩阵扩展(英特尔® AMX)AI加速器,推理场景性能最高提升8倍,深度学习场景性能最高提升2倍,可为主流AI带来强力支持。
从 2022 年开始,大模型就成为了最热门的技术关键词,这种热度显然辐射到了多个相关领域。比如,在近日召开的 2023 世界机器人大会上,「大模型 + 机器人」就成为现场讨论最多的话题。
每年618,当你剁手买买买,清空购物车的时候,你知道在电商的后台,都发生了什么吗?
在当今数字化时代,人工智能(AI)和科学计算已经成为许多行业中不可或缺的技术和工具。然而,对于许多开发者和研究者来说,建立和管理高性能应用环境可能是一项具有挑战性的任务。幸运的是,腾讯云的高性能应用服务(Hyper Application Inventor,HAI)为开发者提供了一个强大而便捷的解决方案。
“众星捧月”。上榜项目让NVIDIA在最新的HPC TOP500榜单中显得格外亮眼——或者准确地说,是在“榜单背后”。
最近随着下一代NVIDIA Ampere计算架构全新发布,腾讯云作为国内云厂商的领导者,将成为业内率先推出采用NVIDIA A100 Tensor Core GPU的云服务实例的云厂商之一。为企业在深度学习训练与推理、高性能计算、数据分析、视频分析等领域提供更高性能的计算资源,同时进一步降低企业的使用成本,帮助企业更快投入市场。 腾讯云即将搭载的NVIDIA A100 Tensor Core GPU,为各种规模的AI、数据分析和HPC都提供了前所未有的加速,以应对各种各样复杂的计算挑
机器之心报道 机器之心编辑部 把意识上传到云端,用深度学习来分析。 戴上脑电帽,一个人就可以仅靠「意念」打字、控制轮椅、指挥机械手,甚至调整无人机姿态……这些技术的算法,正在一场前沿的竞赛中获得前所未有的提升。 上周日,来自全国各大高校的选手在北京亦创国际会展中心举行的「世界机器人大赛」上完成了决赛比拼。在多项赛事中,BCI 脑控机器人大赛「腾讯云杯」技术赛成为了一大看点:今年增设的竞赛组别包括图灵脑机测试、MATLAB 青年组项目等, 为大赛带了更多的可能性。 比赛决出了「脑控打字」挑战赛最终的冠军
在科技的快速发展中,生成式AI(Generative AI)逐渐成为创新的重要驱动力。它通过学习大量数据来生成新内容,应用广泛,包括文本生成、图像生成、音乐创作和代码生成。各大云厂商都提供了丰富的AI服务,使企业和开发者能够更方便地构建和部署生成式AI应用。本文将详细对比AWS、GCP、Azure、阿里云和腾讯云在生成式AI方面的云服务。
本文将探讨GPU开发实践,重点关注使用GPU的AI技术场景应用与开发实践。首先介绍了GPU云服务器在AIGC和工业元宇宙中的重要作用,然后深入讨论了GPU在AI绘画、语音合成等场景的应用以及如何有效地利用GPU进行加速。最后,总结了GPU并行执行能力的优势,如提高算力利用率和算法效率,卷积方式处理效率更高,现场分层分级匹配算法计算和交互,超配线程掩盖实验差距,以及tensor core增加算力峰值等。
引言:深度学习是近年机器学习领域的重大突破,有着广泛的应用前景。随着Google公开Google Brain计划,业界对深度学习的热情高涨。百度成立深度学习研究院,腾讯也启动了深度学习的研究。腾讯在深度学习领域持续投入,获得了实际落地的产出。本文是腾讯深度学习系列文章的第一篇。我们准备了四篇文章,阐述深度学习的原理和在腾讯的实践。 2014年6月22日,腾讯深度学习平台(Tencent Deep Learning Platform)于国际机器学习领域顶级会议ICML2014上首次公开亮相,揭秘了腾讯深度学习
ChatGPT(全名:Chat Generative Pre-trained Transformer),是OpenAI研发的一款聊天机器人程序,于2022年11月30日发布。ChatGPT是人工智能技术驱动的自然语言处理工具,它能够基于在预训练阶段所见的模式和统计规律,来生成回答,还能根据聊天的上下文进行互动,真正像人类一样来聊天交流,甚至能完成撰写邮件、视频脚本、文案、翻译、代码,写论文等任务。
制造业中的AI智能是一个时髦的术语。在描述基于人工智能的缺陷检测解决方案时,通常是关于某种基于深度学习和计算机视觉的视觉检测技术。
本文将全面介绍GPU云服务器的特点、优势及应用场景,并针对不同的使用需求,给出配置方案和详细的代码示例指导,包括:深度学习、高性能计算、3D渲染、区块链矿机、游戏直播等多种场景,旨在帮助用户深入理解GPU云服务器的功能,并快速上手应用。
腾讯云高性能应用服务(Hyper Application Inventor, HAI)作为一款专为人工智能(AI)与科学计算量身打造的云服务产品,广泛应用于以下领域:
简介 近日重温了《深度学习在腾讯的平台化和应用实践(全)》,感兴趣可以在这里阅读 https://zhuanlan.zhihu.com/p/21852266 ,里面介绍了腾讯在深度学习平台基础架构上细致的工作,本人在2016 C++及系统软件大会上也分享了小米cloud machine learning平台的细节,在此给大家总结和对比一下。 腾讯Mariana平台 在前面提到的文章中,已经详细介绍了腾讯深度学习平台,也就是Mariana项目的实现细节了,这是一个真正意义上的平台。在参考文献上也体现出来,腾讯
在AI深度学习模型的训练中,一般会用Python语言实现,原因是其灵活、可读性强。但在AI模型实际部署中,主要会用到C++,原因在于其语言自身的高效性。
AI科技评论按:如果您觉得,是时候给自己的手机应用添加一些热门的机器学习或深度学习算法.....这是个好想法!但您会怎么选择?致力于提供算法服务及小白科普的咨询师 Matthijs Hollemans 近期在博客上分享了他的一些心得体会,AI科技评论独家编译,未经许可不得转载。 绝大多数机器学习实现方法的步骤不外乎如下三点: 采集数据 利用采集的数据来训练一个模型 使用该模型进行预测 假设想做一个“名人匹配 (celebrity match) ”的应用程序,告诉用户他们和哪位名人最相似。首先收集众多名人
在已经过去的2016年,谷歌旗下DeepMind团队打造的AlphaGo引爆了新一轮的人工智能热,开启了2016年的人工智能时代。由此,在蝴蝶效应下,更多的人工智能产品融入了人们的生活,也让人们意识到
戴上脑电帽,一个人就可以仅靠「意念」打字、控制轮椅、指挥机械手,甚至调整无人机姿态……这些技术的算法,正在一场前沿的竞赛中获得前所未有的提升。
领取专属 10元无门槛券
手把手带您无忧上云