在日常生活工作中,出现了人脸验证、人脸支付、人脸乘梯、人脸门禁等等常见的应用场景。这说明人脸识别技术已经在门禁安防、金融行业、教育医疗等领域被广泛地应用,人脸识别技术的高速发展与应用同时也出现不少质疑。其中之一就是人脸识别很容易被照片、视频、人脸模型等方式轻易蒙混,并且网络上也传出不少破解方法。针对这些问题,人脸识别技术其实也是进行了升级迭代,当前的人脸识别系统是需要具有人脸活体检测功能的。那么人脸活体检测功能到底是什么呢?
人脸识别作为一项成熟的生物识别技术,目前已广泛应用于金融、公安、社会服务、电子商务等领域。然而人脸很容易用视频或照片等进行复制,人脸活体检测是人脸识别能否有效应用的前提,目前对活体检测方法的研究有很多。大多数活体检测方法是研究性质的,它们大多基于特征提取与训练的方式,这类方法的准确性是不可控的。另一类方法是要求用户做转头、摇头、眨眼或者张嘴等动作,但是这类方法对于视频的防欺骗性不高。
照片、视频中的人脸有时也能骗过一些不成熟的人脸识别系统,让人们对人脸解锁的安全性产生很大怀疑。在这篇 4 千多字的教程中,作者介绍了如何用 OpenCV 进行活体检测(liveness detection)。跟随作者给出的代码和讲解,你可以在人脸识别系统中创建一个活体检测器,用于检测伪造人脸并执行反人脸欺骗。
这样的用户可能会拿到另一个人的照片。甚至可能他们的手机上就有其他人的照片或视频,他们可以用这样的照片或视频来欺骗识别人脸的相机(就像本文开头的图片那样)。
目前已经有了越来越多的基于人脸识别的应用,例如我们现在应用极广的“刷脸支付”、“刷脸打卡”等。但随着技术的发展,当年很多电影中的画面慢慢变成了现实,坏人可以通过带上提前准备好的照片或者面具,甚至是一副眼镜,轻而易举的被识别成其他人,随着这种人脸伪造的风险和隐患逐日增加,人脸活体检测技术得到了越来越多的关注。
在生物识别系统中,为防止恶意者伪造和窃取他人的生物特征用于身份认证,生物识别系统需具有活体检测功能,即判断提交的生物特征是否来自有生命的个体。一般生物特征的活体检测技术利用的是人们的生理特征,例如活体指纹检测可以基于手指的温度、排汗、导电性能等信息,人脸活体检测可以基于头部的移动、呼吸、红眼效应等信息,活体虹膜检测可以基于虹膜振颤特性、睫毛和眼皮的运动信息、瞳孔对可见光源强度的收缩扩张反应特性等。
随着大数据时代的到来,个人信息安全问题日益严峻,基于图像处理的人脸识别和检测技术得到了广泛的应用。然而,目前人脸检测技术都是针对数量较小的人脸图像,随着大数据概念的深入,图像大数据处理将对人脸识别技术提出更高要求。在最原始的基于人脸识别系统中,基于当前拍摄的人脸照片与预先存储的人脸照片之间的比对,来进行身份验证。然而,当将被仿冒者本人的照片置于这种基于人脸照片比对的身份验证系统中的摄像头前时,这种基于人脸照片比对的身份验证系统可能通过用户身份验证。换言之,恶意用户可以使用被仿冒者的照片来进行恶意攻击(即,照片攻击),这种基于人脸照片比对的人脸识别系统不能抵抗照片攻击。于是,人脸活体检测技术应运而生。
人脸识别技术与其他生物特征识别技术相比,在实际应用中具有天然独到的优势:通过摄像头直接获取,可以非接触的方式完成识别过程,方便快捷。目前已应用在金融、教育、景区、旅运、社保等领域,但方便的同时也带来了一些问题,易获取,使得人脸容易被一些人用照片、视频等方式进行复制,从而达到窃取盗用信息的目的。为了保障信息安全,人脸识别技术责无旁贷,而抗攻击,是其研究中必不可少的一环,其中,人脸活体检测就是技术的核心了。
随着人脸识别技术日趋成熟,商业化应用愈加广泛,然而人脸极易用照片、视频等方式进行复制,因此对合法用户人脸的假冒是人脸识别与认证系统安全的重要威胁。目前基于动态视频人脸检测、人脸眨眼、热红外与可见光人脸关联等领先业界的人脸活体检测算法,已经取得了一定的进步。
人脸识别技术是近年来出现的一种基于人的脸部特征信息进行身份识别的生物特征识别技术。与其他生物识别技术相比较,人脸识别具有友好、简便、准确、经济及可扩展性良好等众多优势,可广泛应用于安全验证、监控、出入口控制等多个方面,目前人脸识别技术已经应用到门禁考勤,访客管理,巡更、会议签到、身份核验等场所。
机器之心原创 作者:高静宜 腾讯优图实验室成功研发光线活体技术,通过闪光模拟实现多重随机信息的编码和解码,使方法建立在密码学的坚实基础之上,是目前已知安全级别最高的技术之一。 极光守卫 Aurora Guard,这个名字听起来好似是某部好莱坞大片中惩恶扬善的超级英雄,或是科幻小说里拯救地球的未来战士。他一出场就自带舞台效果,眼里有星辰大海,身后有万丈光芒,铜墙铁骨坐镇一方,一身孤勇足以抵御八方来袭。 不过事实上,这个酷炫名字的背后并非一个有血有肉的「守护者」,而是腾讯优图实验室研发的一项新技术——光线活体,
人脸识别是一项热门的 计算机技术研究领域,它属于生物特征识别技术,是对 生物体(一般特指人)本身的生物特征来区分生物体个体。与其他生物识别技术相比较,人脸识别具有友好、简便、准确、经济及可扩展性良好等众多优势,可广泛应用于安全验证、监控、出入口控制等多个方面,目前人脸识别技术已经应用到门禁考勤,访客管理,巡更、会议签到、身份核验等场所。
与动态活体检测不同,静态活体检测是指判断静态图片是真实客户行为还是二次翻拍,用户不需要通过唇语或摇头眨眼等动作来识别。一般应用在防攻击不高的场景中。而动态活体检测是指通过指示用户做出指定动作动作(读数,眨眼,左右摇头等),验证用户是否为真实活体本人在执行当前的操作。
人脸识别成了近年火热的人工智能落地方向之一。简单地看来,人脸识别是一个验证身份的过程,所以后跟个人身份证打通也是理所应当。要判断画面上呈现的是不是一个真的人脸,途径和手段是可以非常多样化的。要验证是不是真正的人脸,光靠一个二维的模式识别,或者人脸特征点的对齐都是远远不够的,存在一定的局限性。
AI 科技评论按:本文来自著名的计算机视觉教学网站「pyimagesearch」,文章作者为 Adrian Rosebrock。在本文中,Adrian 将就「如何鉴别图像/视频中的真实人脸和伪造人脸」这一问题进行深入的分析,并介绍使用基于 OpenCV 的模型进行活体检测的具体方法。雷锋网 AI 科技评论编译如下。
人脸识别已经成为生活中越来越常见的技术,其中最关键的问题就是安全,而活体检测技术又是保证人脸识别安全性的一个重要手段,本文将向大家简单介绍活体检测,并动手完成一个活体检测模型的训练,最终实现对摄像头或者视频中的活体进行识别。
相信大家对人脸身份认证已经司空见惯了,比如生活中的人脸支付、身份校验、金融认证等等,但是人脸识别技术面临着多种欺诈手段,如照片、换脸、面具等。如果被恶意复制,将会给个人、集体或者社会带来很大的麻烦和威胁。
随着软件算法和物理终端的进步,人脸识别现在越来越被广泛运用到生活的方方面面,已经成为了重要的身份验证手段,但同时也存在着自身的缺陷,目前常规人脸识别技术可以精准识别目标人像特征,并迅速返回比对结果,但未加入防御照片图像等伪造人脸的技术,无法辨别实时目标人脸的真假情况,在实际身份核验场景中,容易被人脸照片、人脸视频、3D面具等攻击行为干扰,因此如何高效抵御各类欺骗行为攻击,是人脸识别技术迫切需要解决的问题。
如今,人脸识别已经走进了我们生活中的方方面面,拿起手机扫脸付账,扫描人脸完成考勤,刷脸入住酒店纷纷便利了我们的生活。而人脸识别里一项必不可少的技术就是人脸活体检测,即AI不但要确定这是“你”,还需要确定这是“真实存在的、活的你”。
作者 | 彭建宏(旷视科技产品总监彭建宏) 整理 | Just 出品 | 人工智能头条(公众号ID:AI_Thinker) “刷脸”曾一度是人们互相调侃时的用语,如今早已深深地融入我们的生活。从可以人脸解锁的手机,到人脸识别打卡机,甚至地铁“刷脸”进站…… 人脸识别技术越来越多地应用在了各种身份验证场景,在这种看起来发生在电光火石之间的应用背后,又有哪些不易察觉的技术在做精准判别?算法又是通过何种方式来抵御各种欺诈式攻击? 我们近期邀请到旷视科技产品总监彭建宏,他负责 FaceID 在线身份验证云服务的产品
在一些业务需要中,需要识别场景中的用户是否为"真人",因此需要活体检测技术,这篇文章将针对当前行业中的活体检测技术进行总结。
机器之心报道 机器之心编辑部 你的人脸不会被恶意「盗刷」,也有小视科技 AI 算法的一份力。 对于很多人来说,刷脸解锁手机、进行快捷支付是每天必不可少的动作。不少银行和支付机构现在还开启了手机 APP 人脸识别认证,让以往需要前去营业网点才能申请的服务可被远程验证。但与此同时,利用图片、3D 模型等破解人脸识别的方法也越来越多,甚至还出现了 Deepfake 这种仿照他人人脸,生成特定视频的深度学习技术。 随着人脸识别破解技术的出现,人们对于活体检测需求逐渐增多,安全级别要求也愈发严格。当前,活体检测是人
首先谢谢大家对这个库的关注,前一篇博文得到了大家的 支持 和 Star,十分开心。
判断捕捉到的人脸是真实人脸,还是伪造的人脸攻击(如:彩色纸张打印人脸图,电子设备屏幕中的人脸数字图像 以及 面具 等)
增强版人脸核身服务在基础版人脸核身的基础上,通过设备安全增强、活体安全增强、智能分级认证增强,全面升级核身安全能力,能够在刷脸核身的同时实时检测当前设备的风险;根据风险等级智能选择认证方式,有效拦截多种类型的刷脸攻击,针对通过摄像头劫持、恶意注入等攻击方式,拦截准确率可达到99.9%。产品适用于金融、保险、电商、直播、社交等行业的实名注册、密码修改、交易提现场景。
生物识别技术在验证过程中出现的漏洞可能会让不法分子破解各种人脸识别应用,包括苹果的 Face ID。
目前,深度学习的发展使人脸识别技术的性能有了质的提升,其具有自然、直观、易用等优点, 已广泛应用于智能安防、公安刑侦、金融社保、智能家居、电子商务、人脸娱乐、医疗教育等领域, 应用场景丰富, 应用市场潜力巨大。然而, 人脸识别技术的广泛应用亦使得人脸识别技术的安全性问题日益凸显,传统的人脸识别研究专注于整体识别性能的提升, 并不判断当前获取的人脸图像是来自活体人脸还是假体人脸。若不法分子利用传统人脸识别技术的这个安全性隐患, 使用假体人脸成功冒用合法用户身份, 从短期来看, 侵犯了合法用户的权益, 较大可能造成生命财产损失; 从长远来看, 亦会影响人脸识别技术的进一步广泛深入应用。因此, 如何准确识别活体人脸与假体人脸, 保障人脸识别技术的安全性成为一个亟待解决的问题。因此,人脸活体检测研究具有非常重要的应用价值。
人机交互的活体检测方法需要通过对人脸做出实时响应来判断是否为活体,通常采用的方法有脸部姿态和读取指定数字等。
随着政务服务改革的逐渐深化,政府部门从原来此前提倡的“最多跑一次”,正逐渐进化到一次都不用跑,越来越多的服务都可以直接在互联网上、在微信上直接办理。
“SFFAI141期来自北京邮电大学的王卓推荐的文章主要关注于计算机视觉的人脸防伪领域。”
人脸识别: Face Recognition 基于腾讯优图强大的面部分析技术,提供包括人脸检测与分析、五官定位、人脸搜索、人脸比对、人脸验证、人员查重、活体检测等多种功能,为开发者和企业提供高性能高可用的人脸识别服务。 可应用于智慧零售、在线娱乐、智慧楼宇、在线身份认证等多种应用场景,充分满足各行业客户的人脸属性识别及用户身份确认等需求。 人脸核身: 腾讯云慧眼(原金融级身份认证升级版)是一组对用户身份信息真实性进行验证审核的服务套件,提供各类认证功能模块,包含证件 OCR 识别、活体检测、人脸1:1对比等能力,以解决行业内大量对用户身份信息核实的需求,广泛应用于金融、运营商、共享出行等领域。
“某男子9秒被骗245万元”、“某老板10分钟被骗430万元”、“AI换脸不雅视频敲诈勒索”等案例相继出现。
欢迎来到《每周CV论文推荐》。在这个专栏里,还是本着有三AI一贯的原则,专注于让大家能够系统性完成学习,所以我们推荐的文章也必定是同一主题的。
从2015年,马云在德国展示人脸支付技术以来,经过几年发展,人脸支付已经开始走向商用。近日,支付宝蜻蜓、微信青蛙以及人行牵头银联和各商业银行推进落地的刷脸支付系统陆续开始推向市场,笔者近期分别对相关产业各方采用的技术原理和基本概念进行了一些学习和研究,在此做一下记录和分享。
如今,人脸识别已经进入我们生活中的方方面面:拿起手机扫脸付账、完成考勤、入住酒店等,极大地便利了我们的生活。
每周精选 Algorithm System Anti-Spoofing 之人脸活体检测 在小编之前的文章系列中曾介绍过的对抗样本攻击,是目前Deep Learning比较火热的一个研究方向,因为它掀起了关注深度学习在安全领域潜在问题的热潮。虽然活跃于学术界的对抗样本目前还未渗入到工业界中,anti-spoofing(反欺诈)仍一直是大家关注的焦点。人脸识别是大家最为熟悉的应用深度学习的例子,结合人脸识别技术的APP在市面上比比皆是,本文将简单介绍在人脸识别应用中的反欺诈技术——人脸活体检测。 人脸识别,
在人脸识别技术正在被广泛运用的今天,人脸攻击技术不断进化,攻击类型也在逐步增加,给人脸安全技术带来了诸多挑战,我们应该如何应对?
原创声明:本文为 SIGAI 原创文章,仅供个人学习使用,未经允许,不能用于商业目的。
当下正值新冠肺炎(COVID-19)肆虐全球之际,戴口罩成为了全民阻断病毒传播的最佳方式。然而在人脸部分遮挡或恶劣光照条件下,用户人脸识别或人脸认证的合法访问常常提示活体检测失败,甚至根本检测不到人脸。这是由于目前基于RGB等2D空间的主流活体检测方案未考虑光照、遮挡等干扰因素对于检测的影响,而且存在计算量大的缺点。而数迹智能团队研发的3D SmartToF活体检测方案则可以有效解决此问题。那么什么是活体检测?什么又是3D活体检测?以及怎么实现恶劣环境(如人脸遮挡、恶劣光照等)与人脸多姿态变化(如侧脸、表情等)应用场景下的活体检测呢?本文将会围绕这些问题,介绍数迹智能的最新成果——基于ToF的3D活体检测算法。
今天向大家介绍几份近期的人脸技术的工作,人脸图像处理识别技术作为CV领域的一大分支,仍然有很多内容值得探索。
今天,也就是 2017 年 9 月 11 日,小米发布了两款手机产品 Note 3 和 MIX 2, 其中,Note 3推出了一项新功能,人脸解锁。 以后,请忘掉密码,忘掉指纹,欢迎走进看脸的时代。 首先,来看看小米 MIX 2 和 Note 3: 小米 Note 3 其实就是大屏版的小米 6,屏幕尺寸升级为 5.5 英寸,处理器则降级为高通骁龙 660 。后置摄像头的配置与小米 6 相同,依旧是 1200 万像素的广角镜头 + 1200 万像素的长焦镜头,前置摄像头则升级到了 1600 万像素,2μm
机器之心专栏 作者:阅面科技童志军 北京时间 9 月 13 日凌晨 1 点整,大家期待已久的苹果发布会终于拉开序幕。在本次发布会中,最受关注的莫过于高端机型的 iPhoneX。它搭载了集成六核处理器的 A11 芯片,支持无线充电以及 4K/60 帧视频拍摄、1080P/240 帧视频拍摄,同时,FaceID 也是其最大的亮点之一。 与指纹识别不同的是,网络上出现很多对于 FaceID 的质疑和吐槽,「睡觉的时候被女朋友拿去解锁怎么办?」,「看一眼淘购物车就支付」等等。那么事实是否如此呢?新技术的出现总是伴
机器之心专栏 作者:快手MMU 在这篇文章中,该研究提出了一个新的网络结构 SSAN,用以实现具有域泛化性的活体检测算法。与过去的方法直接在图像完全表征上提升域泛化性的思路不同,该研究基于内容特征和风格特征在统计特性上的差异,对他们实施不同的处理。该论文已被 CVPR2022 接收。 一:背景和动机 随着各种呈现攻击的不断出现,活体检测算法(Face anti-spoofing)[1] 越来越受到人们的关注。现有的大多数算法都是基于图像的完全表示来实现域泛化性(Domain generalization)[
【新智元导读】 2017年的“315”落下帷幕,人脸识别技术公司纷纷躺枪。16日一大早,大家纷纷发表声明,表示自家的人脸识别技术还是相当安全的。本文整理了各家的回应,由此也可以看到,这些科技公司是否真的“躺枪”?人脸识别技术近年来持续火热,那么真实的行业发展状况如何?商业化应用中是否真的会如此轻易就被攻破?来看看专家们怎么说。 一年一度的“315” 落下帷幕,伴随着人工智能的火热,相关技术应用也在这场以“打假”、“维护消费者权益”为名的晚会上被点名。其中最受关注的一个便是——人脸识别。 晚会现场,主持人现
标准UVC设备,兼容性强,自带人脸识别算法,支持活体识别,支持1:1比对,不借助外部设备即可进行人脸识别,输出人脸属性值。支持活体识别,有效防止照片、视频和面具等假体攻击。
1.误识率(False;Accept;Rate;FAR):这是将其他人误作指定人员的概率;
领取专属 10元无门槛券
手把手带您无忧上云