首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

训练变压器HuggingFace模型时,打印每一步/周期的输入/输出/梯度/损耗

训练变压器HuggingFace模型时,打印每一步/周期的输入/输出/梯度/损耗是为了帮助开发人员更好地了解模型的训练过程,并进行调试和优化。

在训练变压器HuggingFace模型时,可以通过以下步骤来实现打印每一步/周期的输入/输出/梯度/损耗:

  1. 输入数据:首先,需要准备训练数据集,包括输入序列和对应的标签或目标。输入序列可以是文本、图像等,具体根据模型的应用场景而定。
  2. 模型定义:根据任务需求,选择适合的变压器模型并进行定义。HuggingFace提供了多个预训练的变压器模型,可以根据实际情况选择合适的模型。
  3. 模型训练:使用定义的模型对训练数据集进行训练。在每一个训练周期或步骤结束时,可以通过添加相应的代码来打印输入、输出、梯度和损耗等信息。
  4. 打印输出:通过在训练过程中添加打印输出的代码,可以将每一步/周期的输入、输出、梯度和损耗等信息打印出来。这些信息可以包括输入数据、模型预测输出、损失函数的值以及梯度等。
  5. 调试和优化:通过观察打印输出的信息,开发人员可以了解模型在每一步/周期的表现,进而进行调试和优化。例如,可以根据损失函数的值判断训练是否正常进行,观察梯度的变化情况来调整学习率等。

在使用腾讯云的相关产品进行训练变压器HuggingFace模型时,推荐使用以下腾讯云产品和产品介绍链接地址:

  1. 云服务器(Elastic Compute Service,ECS):提供虚拟化的计算资源,用于搭建训练环境和运行模型训练任务。产品介绍链接
  2. 云原生容器服务(Tencent Kubernetes Engine,TKE):提供高性能、易扩展的容器化应用管理平台,可用于部署和运行训练任务。产品介绍链接
  3. 云硬盘(Cloud Block Storage,CBS):提供高可靠、高性能的块存储服务,用于存储训练数据集和模型文件。产品介绍链接
  4. 人工智能机器学习平台(Tencent Machine Learning Platform,TMLP):提供机器学习模型训练和部署的完整解决方案,可用于管理和监控模型训练任务。产品介绍链接

请注意,以上链接仅为腾讯云产品介绍链接,具体使用时需要根据实际需求选择适合的产品和服务。同时,还可以结合其他腾讯云的计算、存储、人工智能等相关产品来搭建完整的训练环境。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • AutoFormer: Searching Transformers for Visual Recognition

    最近,基于Transformers的模型在图像分类和检测等视觉任务中显示出了巨大的潜力。 然而,变压器网络的设计是具有挑战性的。 已经观察到,深度、嵌入尺寸和头部的数量在很大程度上影响视觉变形器的性能。 以前的模型基于手工手工配置这些维度。 在这项工作中,我们提出了一个新的一次性架构搜索框架,即AutoFormer,专门用于视觉Transformers搜索。 在超网训练期间,自动前缠绕不同块的重量在同一层。 受益于该战略,训练有素的超级网络允许数千个子网得到非常好的训练。 具体来说,这些继承自超级网络权重的子网的性能与那些从头开始重新训练的子网相当。 此外,搜索模型,我们参考的AutoFormers,超过了最近的先进水平,如ViT和DeiT。 特别是AutoFormer-tiny/small/base在ImageNet上实现了74.7%/81.7%/82.4%的top-1精度,分别为5.7M/22.9M/53.7M参数。 最后,我们通过提供下游基准和蒸馏实验的性能来验证自动成形机的可移植性。

    03

    Container: Context Aggregation Network

    卷积神经网络(CNNs)在计算机视觉中无处不在,具有无数有效和高效的变化。最近,Container——最初是在自然语言处理中引入的——已经越来越多地应用于计算机视觉。早期的用户继续使用CNN的骨干,最新的网络是端到端无CNN的Transformer解决方案。最近一个令人惊讶的发现表明,一个简单的基于MLP的解决方案,没有任何传统的卷积或Transformer组件,可以产生有效的视觉表示。虽然CNN、Transformer和MLP-Mixers可以被视为完全不同的架构,但我们提供了一个统一的视图,表明它们实际上是在神经网络堆栈中聚合空间上下文的更通用方法的特殊情况。我们提出了Container(上下文聚合网络),一个用于多头上下文聚合的通用构建块,它可以利用Container的长期交互作用,同时仍然利用局部卷积操作的诱导偏差,导致更快的收敛速度,这经常在CNN中看到。我们的Container架构在ImageNet上使用22M参数实现了82.7%的Top-1精度,比DeiT-Small提高了2.8,并且可以在短短200个时代收敛到79.9%的Top-1精度。比起相比的基于Transformer的方法不能很好地扩展到下游任务依赖较大的输入图像的分辨率,我们高效的网络,名叫CONTAINER-LIGHT,可以使用在目标检测和分割网络如DETR实例,RetinaNet和Mask-RCNN获得令人印象深刻的检测图38.9,43.8,45.1和掩码mAP为41.3,与具有可比较的计算和参数大小的ResNet-50骨干相比,分别提供了6.6、7.3、6.9和6.6 pts的较大改进。与DINO框架下的DeiT相比,我们的方法在自监督学习方面也取得了很好的效果。

    04

    IENet: Interacting Embranchment One Stage Anchor Free Detector

    航空图像中的目标检测是一项具有挑战性的任务,因为它缺乏可见的特征和目标的不同方向。目前,大量基于R-CNN框架的检测器在通过水平边界盒(HBB)和定向边界盒(OBB)预测目标方面取得了显著进展。然而,单级无锚解仍然存在开放空间。提出了一种基于逐像素预测检测器的航空图像定向目标单级无锚检测器。我们通过开发一个具有自我注意机制的分支交互模块来融合来自分类和框回归分支的特征,从而使它成为可能。在角度预测中采用几何变换,使预测网络更易于管理。我们还引入了一种比正多边形借条更有效的借条损耗来检测OBB。在DOTA和HRSC2016数据集上对所提出的方法进行了评估,结果表明,与最先进的检测器相比,我们所提出的IENet具有更高的OBB检测性能。

    01

    计算机视觉最新进展概览(2021年5月30日到2021年6月5日)

    现有的旋转目标检测器大多继承自水平检测范式,因为后者已经发展成为一个成熟的领域。 然而,由于当前回归损失设计的局限性,尤其是对于大纵横比的目标,这些检测器难以在高精度检测中突出表现。 本文从水平检测是旋转物体检测的一种特殊情况出发,从旋转与水平检测的关系出发,将旋转回归损失的设计从归纳范式转变为演绎方法。 在动态联合优化过程中,估计的参数会以自适应和协同的方式相互影响,因此如何调节旋转回归损失中的耦合参数是一个关键的挑战。 具体来说,我们首先将旋转的包围框转换为二维高斯分布,然后计算高斯分布之间的Kullback-Leibler Divergence (KLD)作为回归损失。 通过对各参数梯度的分析,我们发现KLD(及其导数)可以根据对象的特性动态调整参数梯度。 它将根据长宽比调整角度参数的重要性(梯度权重)。 这种机制对于高精度检测是至关重要的,因为对于大纵横比物体,轻微的角度误差会导致严重的精度下降。 更重要的是,我们证明了KLD是尺度不变的。 我们进一步证明了KLD损失可以退化为流行的 损失用于水平检测。

    03

    计算机视觉最新进展概览(2021年6月27日到2021年7月3日)

    1、SIMPL: Generating Synthetic Overhead Imagery to Address Zero-shot and Few-Shot Detection Problems 近年来,深度神经网络(DNNs)在空中(如卫星)图像的目标检测方面取得了巨大的成功。 然而,一个持续的挑战是训练数据的获取,因为获取卫星图像和在其中标注物体的成本很高。 在这项工作中,我们提出了一个简单的方法-称为合成目标植入(SIMPL) -容易和快速地生成大量合成开销训练数据的自定义目标对象。 我们演示了在没有真实图像可用的零射击场景下使用SIMPL合成图像训练dnn的有效性; 以及少量的学习场景,在那里有限的现实世界的图像可用。 我们还通过实验研究了SIMPL对一些关键设计参数的有效性的敏感性,为用户设计定制目标的合成图像提供了见解。 我们发布了SIMPL方法的软件实现,这样其他人就可以在其基础上构建,或者将其用于自己的定制问题。 2、Monocular 3D Object Detection: An Extrinsic Parameter Free Approach 单目三维目标检测是自动驾驶中的一项重要任务。 在地面上存在自我-汽车姿势改变的情况下,这很容易处理。 这是常见的,因为轻微波动的道路平滑和斜坡。 由于在工业应用中缺乏洞察力,现有的基于开放数据集的方法忽略了摄像机姿态信息,不可避免地会导致探测器受摄像机外部参数的影响。 在大多数工业产品的自动驾驶案例中,物体的扰动是非常普遍的。 为此,我们提出了一种新的方法来捕获摄像机姿态,以制定免于外部扰动的探测器。 具体地说,该框架通过检测消失点和视界变化来预测摄像机外部参数。 设计了一种变换器来校正潜势空间的微扰特征。 通过这样做,我们的3D探测器独立于外部参数变化工作,并在现实情况下产生准确的结果,例如,坑洼和不平坦的道路,而几乎所有现有的单目探测器无法处理。 实验表明,在KITTI 3D和nuScenes数据集上,我们的方法与其他先进技术相比具有最佳性能。 3、Focal Self-attention for Local-Global Interactions in Vision Transformers 最近,视觉Transformer及其变体在各种计算机视觉任务中显示出了巨大的前景。 通过自我关注捕捉短期和长期视觉依赖的能力可以说是成功的主要来源。 但它也带来了挑战,由于二次计算开销,特别是高分辨率视觉任务(例如,目标检测)。 在本文中,我们提出了焦点自关注,这是一种结合了细粒度局部交互和粗粒度全局交互的新机制。 使用这种新机制,每个令牌都以细粒度处理最近的令牌,但以粗粒度处理远的令牌,因此可以有效地捕获短期和长期的可视依赖关系。 随着焦点自注意,我们提出了一种新的视觉变压器模型,称为Focal Transformer,在一系列公共图像分类和目标检测基准上实现了优于目前最先进的视觉变压器的性能。 特别是我们的Focal Transformer模型,中等尺寸为51.1M,较大尺寸为89.8M,在2224x224分辨率下的ImageNet分类精度分别达到83.5和83.8 Top-1。 使用Focal transformer作为骨干,我们获得了与目前最先进的Swin transformer相比的一致和实质的改进,这6种不同的目标检测方法采用标准的1倍和3倍计划训练。 我们最大的Focal Transformer在COCO mini-val/test-dev上产生58.7/58.9 box mAPs和50.9/51.3 mask mAPs,在ADE20K上产生55.4 mIoU用于语义分割,在三个最具挑战性的计算机视觉任务上创建新的SOTA。 4、AutoFormer: Searching Transformers for Visual Recognition 最近,基于Transformer的模型在图像分类和检测等视觉任务中显示出了巨大的潜力。 然而,Transformer网络的设计是具有挑战性的。 已经观察到,深度、嵌入尺寸和头部的数量在很大程度上影响视觉变形器的性能。 以前的模型基于手工手工配置这些维度。 在这项工作中,我们提出了一个新的一次性架构搜索框架,即AutoFormer,专门用于视觉转换器搜索。 在超网训练期间,自动前缠绕不同块的重量在同一层。 受益于该战略,训练有素的超级网络允许数千个子网得到非常好的训练。 具体来说,这些继承自超级网络权重的子网的性能与那些从头开始重新训练的子网相当。 此外,搜索模型,我们参考的AutoFormers,超过了最近的先进水平,如ViT和DeiT。 特别是AutoFormer-tiny/small/base在ImageNet上实现了74.7%/81.7%/82.4%的top-1精度,分别为5.7M/22

    02

    计算机视觉最新进展概览(2021年6月6日到2021年6月12日)

    水下目标检测技术已引起了人们的广泛关注。 然而,由于几个挑战,这仍然是一个未解决的问题。 我们通过应对以下挑战,使之更加现实。 首先,目前可用的数据集基本上缺乏测试集注释,导致研究者必须在自分测试集(来自训练集)上与其他sota进行比较。 训练其他方法会增加工作量,不同的研究人员划分不同的数据集,导致没有统一的基准来比较不同算法的性能。 其次,这些数据集也存在其他缺点,如相似图像过多或标签不完整。 针对这些挑战,我们在对所有相关数据集进行收集和重新标注的基础上,引入了一个数据集——水下目标检测(detection Underwater Objects, DUO)和相应的基准。 DUO包含了多种多样的水下图像,并有更合理的注释。 相应的基准为学术研究和工业应用提供了SOTAs(在mmddetection框架下)的效率和准确性指标,其中JETSON AGX XAVIER用于评估检测器速度,以模拟机器人嵌入式环境。

    01
    领券