iOS10系统是一个较有突破性的系统,其在Message,Notification等方面都开放了很多实用性的开发接口。本篇博客将主要探讨iOS10中新引入的SpeechFramework框架。有个这个框架,开发者可以十分容易的为自己的App添加语音识别功能,不需要再依赖于其他第三方的语音识别服务,并且,Apple的Siri应用的强大也证明了Apple的语音服务是足够强大的,不通过第三方,也大大增强了用户的安全性。
原文:Building a Speech-to-Text App Using Speech Framework in iOS 10
最近自己想接触下语音识别,经过一番了解和摸索,实现了对语音识别API的简单调用,正好写文章记录下。目前搜到的帖子里,有现成的调用百度语音API来对音频文件进行识别的;也有通过谷歌语音服务来实现了实时语音识别的。由于我这谷歌语音一直调用不成功,就将二者结合,简单实现了通过百度语音API来进行实时语音识别。
对于语音识别初学者来说,通过简单案例快速上手,不仅能够快速了解语音识别等实际应用模式,对枯燥无味的学习中提升兴趣值也大有帮助。百度语音提供了语音识别、语音合成和语音唤醒等产品的SDK免费资源,是面向广大开发者永久免费的开放语音技术平台,且简单易用,可以作为学习之余练手的好去处。
现实生活中,越来越多的地方需要使用到语音识别,微信里客户的长条语音,游戏里更方便快速的交流,都是语音识别的重要场景。现在为大家强力推荐腾讯云语音识别,一款为企业和开发者提供极具性价比的语音识别服务。腾讯云语音识别服务经微信、腾讯视频、王者荣耀、和平精英等大量内部业务验证;同时也在线上线下大量互联网、金融、教育等领域的外部客户业务场景下成功落地。同时日服务亿级用户,具有海量数据支撑、算法业界领先、支持语种丰富、服务性能稳定、抗噪音能力强、识别准确率高等优势。
在本文中,我们提供了一个用于训练语音识别的RNN的简短教程,其中包含了GitHub项目链接。 作者:Matthew Rubashkin、Matt Mollison 硅谷数据科学公司 在SVDS的深度
随着互联网时代的进步,智能产品逐渐配备了更加多元化的功能应用、更加丰富的内容资源,用户在使用语音相关的功能时,越来越多的需求需要向智能产品用户提供更便捷的操作体验,语音转换成文本,语音识别是人工智能领域极为重要的前沿技术,实现快速、高效、准确的语音识别及控制,实现智能行业内全新的便捷操作模式。
今天给大家分享一下使用腾讯语音识别服务轻松完成音频文件识别功能。这里使用的是C#编写的窗体应用。希望对大家了解和快速接入腾讯语音识别服务的朋友提供一些帮助!
笔者在前文《Azure AI 服务之文本翻译》中简单介绍了 Azure 认知服务中的文本翻译 API,通过这些简单的 REST API 调用就可以轻松地进行机器翻译。如果能在程序中简单的集成语音转文本
随着人工智能技术的迅猛发展,语音技术作为其中的重要分支,正在逐步改变我们的生活和工作方式。腾讯云作为国内领先的云服务提供商,其语音产品在技术能力、应用场景和业务价值等方面均表现出色。本文将从语音产品科普解读、应用实践和行业案例三个方面,深入探讨腾讯云语音产品的技术原理、应用场景、业务价值及其在各行业中的实际应用。
我们现在就基于百度Ai开放平台进行语音技术的相关操作,demo使用的是C#控制台应用程序。
Python在语音识别方面功能很强大,程序语言简单高效,下面编程实现一下如何实现语音识别。本文分享如何调用百度AI开放平台实现语音识别技术。
以下内容来自于Sensory网站,作者为Sensory CEO Todd Mozer -
虽然基于RNN的技术已经在语音识别任务中得到验证,但训练RNN网络需要的大量数据和计算能力。最近,Facebook的AI研究中心(FAIR)发表的一个研究论文,提出了一种新的单纯基于卷积神经网络(Convolutional Neural Network)的语音识别技术,而且提供了开源的实现wav2letter++,一个完全基于卷积模型的高性能的语音识别工具箱。
语音识别技术,也被称为自动语音识别,目标是以电脑自动将人类的语音内容转换为相应的文字和文字转换为语音。
在人工智能的辉煌进程中,语音识别技术无疑占据了一个至关重要的地位。从最初的简单命令识别到今日能理解复杂语境的智能助手,语音识别技术已经深入人类生活的各个角落。它不仅改变了我们与机器交流的方式,更开启了一个全新的互动时代。
CTC模型是语音识别模型中常见的模块之一,现有主流的语音识别系统经常采用该模型来实现端到端的语音识别。而CTC出现之前,语音识别模型的端到端识别效果还是相对较弱的,也就是说CTC解决了这一问题。
2012 年,在深度学习技术的帮助下,语音识别研究有了极大进展,很多产品开始采用这项技术,如谷歌的语音搜索。这也开启了该领域的变革:之后每一年都会出现进一步提高语音识别质量的新架构,如深度神经网络、循环神经网络、长短期记忆网络、卷积神经网络等等。然而,延迟仍然是重中之重:自动语音助手对请求能够提供快速及时的反应,会让人感觉更有帮助。
今年 2 月,中国人工智能公司出门问问联合西北工业大学推出了全球首个面向产品和工业界的端到端语音识别开源工具 ——WeNet。
素来被认为是“人脸识别独角兽”——或者更宽泛一点说,“计算机视觉独角兽”的依图科技,公布了他们中文语音识别技术的最新突破,以及令人瞩目的产业布局。
语音识别功能提供面向移动终端的语音识别能力。它基于华为智慧引擎(HUAWEI HiAI Engine)中的语音识别引擎,向开发者提供人工智能应用层API。该技术可以将语音文件、实时语音数据流转换为汉字序列,准确率达到90%以上(本地识别95%)。
自然语言处理领域正在从统计方法转变为神经网络方法。 自然语言中仍有许多具有挑战性的问题需要解决。然而,深度学习方法在一些特定的语言问题上取得了最新的成果。这不仅仅是深度学习模型在基准问题上的表现,基准问题也是最有趣的;事实上,一个单一的模型可以学习词义和执行语言任务,从而消除了对专业手工制作方法渠道的需要。 在这篇文章中,你会发现7个有趣的自然语言处理任务,也会了解深度学习方法取得的一些进展。 文本分类 语言建模 语音识别 字幕生成 机器翻译 文档摘要 问答(Q&A) 我试图专注于你可能感兴趣的各种类型的终
随着人工智能技术的飞速发展,语音识别(ASR)和语音合成(TTS)技术已经成为智能语音服务领域的核心技术。腾讯云语音产品,凭借其业界领先的技术优势和极具竞争力的价格,为各行业提供了从标准化到定制化的全方位智能语音服务,广泛应用于多个行业场景,极大地推动了企业服务、阅读、教育、游戏、金融、电商等行业的智能化升级。
腾讯云AI团队联合腾讯优图、AILab、微信智聆、微信智言等实验室,帮助合作伙伴和客户高效打造针对性的解决方案,助力各行各业的数字化和智能化转型。 6月腾讯云神图、语音识别、NLP、语音合成更新全新功能;语音识别优化了核心性能。 腾讯云神图·人体分析 人体关键点识别服务发布,可识别出图片中的人体,并输出14个关键点位置。 人体属性识别服务发布,可以识别图片中人体的年龄、性别、朝向、是否有包、着装等,可有效降低视频搜索成本。 人体分析官网demo已上线,用户可以在官网直观体验人体分析产品功能、效果。 语
将语音实时识别为文字,适用于语音聊天、语音输入、语音搜索、语音下单、语音指令、语音问答等多种场景。
导语 数据万象(Cloud Infinite,CI)处理平台涵盖图片处理、内容审核、音视频处理、智能语音、内容识别、文档预览等各项存储云原生能力,其中智能语音围绕“声音”提供多元化内容服务,在通勤导航、智能家居、网络K歌、虚拟社交各场景下为用户提供助力。 上班路上,红灯之前,午饭时间,谁没有点张开小耳朵听听音频的需求呢? 比如以小王的普通一天举例,这也是千千万万当代年轻人的现状,可以看到从早到晚都有丰富的音频活动,娱乐工作生活面面俱到,横跨数个产品,多个行业,软硬件之间来回跳跃,当然小王能在如此多的活
1.最近研究语音识别,就顺便研究了一下隐马尔科夫链。 2.其中核心代码为: 3.训练样本数据集,请联系作者。
人工智能用于各种语音识别和理解活动,从启用智能扬声器到为失聪或有语言障碍的人设计辅助工具。然而这些语音理解算法经常在最需要它们的日常场景中表现不佳:当很多人同时说话或有很多背景噪音时。即使是先进的降噪技术也常常无法有效应对海滩旅行中的海浪声或嘈杂的街头市场背景的喧闹声。
CRM 客户关系管理系统 通常是企业为提高核心竞争力,利用相应的信息技术以及互联网技术协调企业与客户间在销售、营销和服务上的交互,从而通过不断的优化,提升企业管理方式,向客户提供创新式的个性化的客户交互和服务的过程。
提取视频文件中的图像然后使用OCR技术识别静态图像中的文本,提取视频文件中的音频然后使用语音识别技术提取其中的文本,如果视频文本或音频文本中包含指定的关键词则进行提示。
近日,著名的语音识别与图像处理解决方案提供商Nuance Communications(以下称Nuance)宣布,已经以2.15亿美元完成了对客户服务与互动解决方案提供商TouchCommerce的收
选自IBM 作者:George Saon 机器之心编译 参与:吴攀、黄小天 去年十月,微软人工智能与研究部门的一个研究者和工程师团队报告他们的语音识别系统实现了和专业速录员相当甚至更低的词错率(WER)——达到了 5.9%,参考机器之心文章《重磅 | 微软语音识别实现历史性突破:语音转录达到专业速录员水平(附论文)》。但 IBM 官方博客今日发文宣称人类的水平实际上应该是 5.1%,而同时该文章还表示 IBM 的系统的词错率已经超越了之前微软报告的最佳水平,达到了 5.5%。IBM 宣称这是一个全新的突破,
Common Voice项目旨在创建开源语音识别数据集,Mozilla宣布它正在扩大此众包项目,以加入更多语言。
在波士顿的Re-Work深度学习峰会上,高通公司的人工智能研究员Chris Lott介绍了他的团队在新的语音识别程序方面的工作。
---- 新智元报道 编辑:桃子 【新智元导读】3人团队如何用AI改变语音市场? 三人打下的专注语音技术独角兽,如今又成功融资了。 前段时间,美国音频API平台AssemblyAI完成了3000万美元的B轮融资。 这是一个可以自动将音频和视频文件以及实时音频流转换为文本的平台。 AssemblyAI的创始人兼首席执行官Dylan Fox表示, 「我们正在构建用于定制化语音识别的API,开发人员可以用我们的API 将语音转录成文字或者创建自己的语音接口,而且他们不需要做任何数据上的挖掘和训练,我们
高通公司人工智能研究人员表示,该公司正在研制用于智能终端的语音识别系统,通过综合采用循环神经网络和卷积神经网络,该系统语音识别准确率可达95%。
随着 AI 的不断发展,我们前端工程师也可以开发出一个智能语音机器人,下面是我开发的一个简单示例,大家可以访问这个视频地址查看效果。
最近刚换了三星的Note9,深度体验了一下Bixby的语音功能,觉得挺不错的,而且上周的人工智能大会上,分布屏幕两边的分别是科大讯飞和腾讯提供的服务:讯飞听见和腾讯同传。两者的表现也都是让人眼前一亮。
选自Mozilla 机器之心编译 参与:刘晓坤 Mozilla 对语音识别的潜能抱有很大期望,但这一领域目前仍然存在对创新的明显阻碍,这些挑战激发这家公司启动了 DeepSpeech 项目和 Common Voice 项目。近日,他们首次发布了开源语音识别模型,其拥有很高的识别准确率。与此同时,这家公司还发布了世界上第二大的公开语音数据集,该数据集由全球将近 20000 人所贡献。 开源语音识别模型:https://hacks.mozilla.org/2017/11/a-journey-to-10-word
【导读】亚马逊的 Alexa 的巨大成功已经证明:在不远的将来,实现一定程度上的语音支持将成为日常科技的基本要求。整合了语音识别的 Python 程序提供了其他技术无法比拟的交互性和可访问性。最重要的是,在 Python 程序中实现语音识别非常简单。阅读本指南,你就将会了解。你将学到:
最近在研究语音识别方向,看了很多的语音识别的资料和文章,了解了一下语音识别的前世今生,其中包含了很多算法的演变,目前来说最流行的语音识别算法主要是依赖于深度学习的神经网络算法,其中RNN扮演了非常重要的作用,深度学习的应用真正让语音识别达到了商用级别。然后我想动手自己做一个语音识别系统,从GitHub上下载了两个流行的开源项目MASR和ASRT来进行复现,发现语音识别的效果没有写的那么好,其中如果要从零来训练自己的语言模型势必会非常耗时。
Voicera获1450万美元融资,智能语音真的前途无限吗?
整合了语音识别的 Python 程序提供了其他技术无法比拟的交互性和可访问性。最重要的是,在 Python 程序中实现语音识别非常简单。阅读本指南,你就将会了解。你将学到:
选自SVDS 作者:Matthew Rubashkin、Matt Mollison 机器之心编译 参与:李泽南、吴攀 来自 Silicon Valley Data Science 公司的研究人员为我们展示了循环神经网络(RNN)探索时间序列和开发语音识别模型的能力。目前有很多人工智能应用都依赖于循环深度神经网络,在谷歌(语音搜索)、百度(DeepSpeech)和亚马逊的产品中都能看到RNN的身影。 然而,当我们开始着手构建自己的 RNN 模型时,我们发现在使用神经网络处理语音识别这样的任务上,几乎没有简单直
【新智元导读】吴恩达曾经预测当语音识别的准确率从95%上升到99%时,语音识别将会成为人类与计算机交互的新方式。归功于深度学习,这4%的准确率的提升使得语音识别从难以实际应用的技术变成有无限的应用潜力
译者 | 廉洁 编辑 | 明明 【AI科技大本营导读】亚马逊的 Alexa 的巨大成功已经证明:在不远的将来,实现一定程度上的语音支持将成为日常科技的基本要求。整合了语音识别的 Python 程序提供了其他技术无法比拟的交互性和可访问性。最重要的是,在 Python 程序中实现语音识别非常简单。阅读本指南,你就将会了解。你将学到: •语音识别的工作原理; •PyPI 支持哪些软件包; •如何安装和使用 SpeechRecognition 软件包——一个功能全面且易于使用的 Python 语音识别库。
译者 | 廉洁 编辑 | 明明 出品 | AI科技大本营(公众号ID:rgznai100) 【AI科技大本营导读】亚马逊的 Alexa 的巨大成功已经证明:在不远的将来,实现一定程度上的语音支持将成为日常科技的基本要求。整合了语音识别的 Python 程序提供了其他技术无法比拟的交互性和可访问性。最重要的是,在 Python 程序中实现语音识别非常简单。通过本指南,你将学到: 语音识别的工作原理; PyPI 支持哪些软件包; 如何安装和使用 SpeechRecognition 软件包——一个功能全面且易于
【导读】亚马逊的 Alexa 的巨大成功已经证明:在不远的将来,实现一定程度上的语音支持将成为日常科技的基本要求。整合了语音识别的 Python 程序提供了其他技术无法比拟的交互性和可访问性。最重要的是,在 Python 程序中实现语音识别非常简单。阅读本指南,你就将会了解。你将学到: •语音识别的工作原理; •PyPI 支持哪些软件包; •如何安装和使用 SpeechRecognition 软件包——一个功能全面且易于使用的 Python 语音识别库。 ▌语言识别工作原理概述 语音识别源于 20 世纪
领取专属 10元无门槛券
手把手带您无忧上云