今年 2 月,中国人工智能公司出门问问联合西北工业大学推出了全球首个面向产品和工业界的端到端语音识别开源工具 ——WeNet。
随着物联网技术和智能设备技术的快速发展,人与机器的交互,不再仅依赖于鼠标和键盘,更有可能的是直接采用语音。 这其中的关键技术就是自动语音识别(Automatic Speech Recognition,ASR)。其所要完成的工作,简单地说,就是在与机器进行语音交流时,能够让机器听懂你在说什么。 但语音识别技术的发展日新月异,新的理论和方案不断出现,读者除了掌握基本原理,也亟须了解语音识别最新的前沿技术,例如加权有限状态转换器(WFST)、端到端(E2E)语音识别等。 本次博文视点学院公开课,我们特邀厦门大
编者按:本文原作者 Cindi Thompson,美国德克萨斯大学奥斯汀分校(University of Texas at Austin)计算机科学博士,数据科学咨询公司硅谷数据科学(Silicon Valley Data Science,SVDS)首席科学家,在机器学习、自然语言处理等领域具有丰富的学术研究和产业界从业经验。AI 研习社编译。 作为 SVDS 研究团队的成员,我们会经常接触各种不同的语音识别技术,也差不多见证了语音识别技术近几年的发展。直到几年之前,最先进的语音技术方案大多都是以语音为
虽然基于RNN的技术已经在语音识别任务中得到验证,但训练RNN网络需要的大量数据和计算能力。最近,Facebook的AI研究中心(FAIR)发表的一个研究论文,提出了一种新的单纯基于卷积神经网络(Convolutional Neural Network)的语音识别技术,而且提供了开源的实现wav2letter++,一个完全基于卷积模型的高性能的语音识别工具箱。
选自svds 作者:Cindi Thompson 机器之心编译 参与:李泽南、Smith 目前开源世界里存在多种不同的语音识别工具包,它们为开发者构建应用提供了很大帮助。这些工具各有哪些优劣?数据科学
在人工智能的辉煌进程中,语音识别技术无疑占据了一个至关重要的地位。从最初的简单命令识别到今日能理解复杂语境的智能助手,语音识别技术已经深入人类生活的各个角落。它不仅改变了我们与机器交流的方式,更开启了一个全新的互动时代。
现实生活中,越来越多的地方需要使用到语音识别,微信里客户的长条语音,游戏里更方便快速的交流,都是语音识别的重要场景。现在为大家强力推荐腾讯云语音识别,一款为企业和开发者提供极具性价比的语音识别服务。腾讯云语音识别服务经微信、腾讯视频、王者荣耀、和平精英等大量内部业务验证;同时也在线上线下大量互联网、金融、教育等领域的外部客户业务场景下成功落地。同时日服务亿级用户,具有海量数据支撑、算法业界领先、支持语种丰富、服务性能稳定、抗噪音能力强、识别准确率高等优势。
作为人工智能领域的一个重要方向,语音识别近年来在深度学习(Deep Learning)的推动下取得了重大的突破,为人机语音交互应用的开发奠定了技术基础。语音识别技术演进及实现方法、效果,既是语音识别从业者需要系统掌握的知识,也是智能化应用开发者应当了解的内容。日前,微软研究院首席研究员、《解析深度学习-语音识别实践》第一作者俞栋接受CSDN专访,深入解析了基于深度学习的语音识别的最新技术方向,和微软团队的实践心得,并对微软开源的深度学习工具CNTK的迭代思路做了介绍。 俞栋介绍了deep CNN、LFMMI
随着物联网技术和智能设备技术的快速发展,人与机器的交互,不再仅依赖于鼠标和键盘,更有可能的是直接采用语音。
【新智元导读】微软语音识别技术24年老将黄学东近日被评为“微软全球技术院士”,成功摘下这一微软技术的“桂冠”。 黄学东于1993年加入微软。1995年,黄学东最终把洪小文也拉入微软。黄学东还曾在Bing工作,一直跟随沈向洋博士。接受新智元的专访时,他谈到了去年微软对话语音识别词错率低至5.9%背后的故事。 同时,黄学东认为语音识别的下一个大难关是语义理解,目前看来最有希望的路线是 LSTM + Attention。 黄学东,微软语音识别技术 24 年老将,IEEE/ACM 双科院士,微软深度学习工具包CNT
是磁带、光盘、录音笔、手机等录音工具,还是会议、访谈、沟通、演唱等场景?是键指如飞的神奇速录师,还是方便快捷的语音转文字AI小工具?
文章目录 语音识别 语音识别过程 预处理:语音信号预处理—提取语音MFCC特征 工具Kaldi DeepSpeech wav2letter 端到端语音识别 语音识别 自动语音识别技术(AUTOMATIC SPEECH RECOGNITION, ASR)是一种将人的语音转换为文本 的技术。语音识别作为一个多学科交叉的领域,它与声学、语音学、语言学、数字信号处 理理论、信息论、计算机科学等众多学科紧密相连。 语音识别近年来受关注度不断提升,相关技术广泛用于家用电器和电子设备,如智能音 箱、声控遥控器
可以看到,语音识别的应用场景越来越广泛,我们在做小程序开发的时候,也经常会遇到使用语音识别的场景;其中语音输入法是非常基础的功能场景,如果能实现这个基础功能,那其他场景都可以基于这个功能来打造更有趣的小程序服务。
一、前言 6月27日,美国权威科技杂志《MIT科技评论》公布2017全球最聪明50家公司榜单。科大讯飞名列中国第一、全球第六。全世界排在科大讯飞前面企业分别是:英伟达、Spacex、亚马逊、23andme、Alphabet。 《MIT科技评论》认为,“科大讯飞旗下的语音助手是中国版的Siri,其可携带实时翻译器则是一款杰出的人工智能应用,克服了方言、俚语和背景杂音,可将汉语精准地翻译成十几种语言。科大讯飞在中国语音技术市场的占有率70%。”越来越多的人认为,语音识别将成为下一代交互革命的关键技术。 与此
孩子的语音特征,其与成人的不同之处。为什么现在的通用语音识别算法在识别孩子语音的时候表现糟糕,以及Sensory的解决之道 - Sensory VoiceAI for Kids!
1 新智元推荐1 来源:微软研究院AI头条 【新智元导读】继 9月13日微软将对话语音识别错误率降至6.3%的记录后,前天再次宣布进一步将错误率降至 5.9%,首次达成与专业速记员持平且优于绝大多数人的表现。该成功归功于他们采用了一种神经语言模型,该模型在空间中被表现为连续的向量,计算机能通过该模型得知比如“fast”和“quick”是具有紧密联系的近义词。 一个月前,2016年9月14日,微软的对话语音识别技术在产业标准Switchboard语音识别基准测试中实现了词错率(word error rate
智能语音在近年一直是个很火的话题,商业应用也在不断增加,在10月10号的深蓝&大咖面对面活动中,我们邀请到了语音界大佬陈果果博士,针对目前语音领域问题进行分享与探讨。
---- 距Kaldi语音识别理论与实践课上线已经过去了两个月,本课程作为语音识别领域的敲门砖,受到同学们的力荐。鉴于kaldi在行业上越趋普及,但仍有许多AI语音爱好者及小白无法掌握和入门而被劝退,为促进产学研的快速发展,助力AI语音落地,帮助更多的同学了解Kaldi语音识别的相关知识,语音之家工匠学堂现将《Kaldi语音识别理论与实践》免费开放! 本课程为2022年秋季正在更新的与时俱进的实战课程,由清华大学语音识别实验室讲师教研教学,如果你想独立构造一套基础的语音识别系统, 或者你是一名零基础的语音
本文介绍了一种基于腾讯云智能语音的实时语音识别微信小程序的开发和实现。该小程序使用Wafer服务器进行音频文件的上传和识别,利用腾讯云的语音识别API进行实时语音转文字,并将识别结果展示在小程序中。具体实现包括搭建项目结构、配置服务器、上传音频文件、添加识别和转文字功能、以及处理异常情况等。该小程序可以方便地在手机端进行调试和体验。
语音识别是特别酷的功能,ISD9160的核心卖点就是这个语音识别,使用了Cybron VR 算法。 很好奇这颗10块钱以内的IC是如何实现人家百来块钱的方案。且听如下分析。
12月10-12日, 2015中国大数据技术大会 将在北京召开。会议前夕,我们特采访了本次会议的深度学习分论坛演讲嘉宾阿里巴巴iDST语音组高级专家鄢志杰,以期对其从事工作和演讲内容有进一步的了解。 鄢志杰将在12月11日下午的深度学习分论坛进行题为“Deep Learning 助力客服小二:数据技术及机器学习在客服中心的应用”的主题演讲,分享基于DNN、CNN、RNN(LSTM)及其各种组合模型的语音识别、自然语言处理技术在客服领域的应用。 鄢志杰在接受采访时表示,他的分享内容将包括Deep Learni
先回顾下,生活、工作中你使用过哪些语音识别相关的产品或者服务? 培训/考试相关的小程序,使用语音识别来判断回答是否正确; 英语口语练习的小程序,使用语音识别来打分; 你画我猜类的小程序,使用语音识别来判断是否猜对; 活动营销类的小程序,比如口令识别、口令红包等; 直播/短视频类小程序,使用语音识别生成字幕; 客服类的小程序,使用语音识别、语音合成来实现智能客服。 可以看到,语音识别的应用场景越来越广泛,我们在做小程序开发的时候,也经常会遇到使用语音识别的场景;其中语音输入法是非常基础的功能场景,如果能实
AI 科技评论按:近日,Facebook 人工智能研究院 ( FAIR ) 宣布开源首个全卷积语音识别工具包 wav2letter++。系统基于全卷积方法进行语音识别,训练语音识别端到端神经网络的速度是其他框架的 2 倍多。他们在博客中对此次开源进行了详细介绍。
语音界大佬、开源语音识别系统 kaldi 的开发者 Dan Povey 被约翰・霍普金斯大学 (JHU) 解雇了。
作者 | 陈孝良 责编 | 胡永波 目前来看,语音识别的精度和速度比较取决于实际应用环境,在安静环境、标准口音、常见词汇上的语音识别率已经超过95%,完全达到了可用状态,这也是当前语音识别比较火热的原因。 随着技术的发展,现在口音、方言、噪声等场景下的语音识别也达到了可用状态,但是对于强噪声、超远场、强干扰、多语种、大词汇等场景下的语音识别还需要很大的提升。当然,多人语音识别和离线语音识别也是当前需要重点解决的问题。 学术界探讨了很多语音识别的技术趋势,有两个思路是非常值得关注的,一个是就是端到端的语音识别
常会遇到有些 PDF 是扫描版的无法复制(豆丁网上的),有些网页(极客时间)也限制了复制功能。这时候要复制,通常情况下只能手动去打,很浪费时间对吧。当然也可以使用一些 OCR 识别软件,但要么付费要体积很大,不方便。
【新智元导读】 微软语音识别研究团队在黄学东的带领下,去年将语音识别的单词错误率降至5.9%,又在最近降至5.1%。在本次专访中,我们讨论了语音识别错误率百分之几的小数点在研究和实际应用上的意义。黄学东认为,从研究角度来说,这个意义十分重大,即便是0.1%的差距,无论是运算量还是时间,耗费都是巨大的。 达到人类水平,超越人类水平,人工智能研究领域的突破性进展。 以上赞誉被给予了微软最近的语音识别研究成果:其语音识别研究团队在黄学东的带领下,去年将语音识别的单词错误率降至5.9%,又在最近降至5.1%。 从研
语音识别源于 20 世纪 50 年代早期在贝尔实验室所做的研究。早期语音识别系统仅能识别单个讲话者以及只有约十几个单词的词汇量。现代语音识别系统已经取得了很大进步,可以识别多个讲话者,并且拥有识别多种语言的庞大词汇表。 语音识别的首要部分当然是语音。通过麦克风,语音便从物理声音被转换为电信号,然后通过模数转换器转换为数据。一旦被数字化,就可适用若干种模型,将音频转录为文本。 大多数现代语音识别系统都依赖于隐马尔可夫模型(HMM)。其工作原理为:语音信号在非常短的时间尺度上(比如 10 毫秒)可被近似为静止过程,即一个其统计特性不随时间变化的过程。 许多现代语音识别系统会在 HMM 识别之前使用神经网络,通过特征变换和降维的技术来简化语音信号。也可以使用语音活动检测器(VAD)将音频信号减少到可能仅包含语音的部分。 幸运的是,对于 Python 使用者而言,一些语音识别服务可通过 API 在线使用,且其中大部分也提供了 Python SDK。
深度学习是一种新兴的技术,已经在许多领域中得到广泛的应用,如计算机视觉、自然语言处理、语音识别等。在深度学习中,深度学习框架扮演着重要的角色。Tensorflow是一种广泛使用的深度学习框架,已经成为深度学习的事实标准。Tensorflow2是Tensorflow的最新版本,它在许多方面都有所改进,并且更加易于使用。
在过去的十年左右的时间里,机器学习的进步为开发越来越先进的语音识别工具铺平了道路。通过分析人类语音的音频文件,这些工具可以学习识别不同语言的单词和短语,并将其转换为机器可读格式。
杰出的科学家和工程师们一直在努力地给机器赋予自然交流的能力,语音识别就是其中的一个重要环节。人类对语音识别技术的研究从上世纪 50 年代开始就未曾停止。在长期的探索中,一次次重大的技术突破逐渐让语音识别技术进入我们的日常生活。今天的 ASR 技术水平是前所未有的。高性能的语音识别给我们带来了更多的生活体验,我们拥有了可以对话的智能数字助手;它也在逐步改善相关领域的生产力水平。
---- 新智元报道 来源:Facebook AI 编辑:LRS 【新智元导读】Facebook在语音识别上又出重磅新作,继wav2vec, wav2vec 2.0以来,又出完全不需要监督数据的wav2vec-U,小众语言也能用语音识别啦! 相比显示器、鼠标、键盘这些传统的人机交互方式以外,随着语音识别技术的逐渐成熟,和电子产品进行「对话」也逐渐成为一种稀松平常的人机交互。 无论是给计算机或其他设备下达指示,还是回答用户的问题,语音识别在各个方面让电子产品的使用变得更加容易,无需学习,想要干什么只
文 / 陈孝良 11月16号,百度发布了渡鸦智能音箱和DuerOS开发板SoundPi,至此,国内再一名巨头加入智能音箱大战。迄今为止,国内战场上的巨头有阿里、京东、腾讯、百度、小米、科大讯飞等,国外则有苹果、微软、亚马逊、谷歌、脸书、三星等,这些巨头占据了全球市值的排名榜,同时发力争夺未来人工智能时代的语音入口,甚至亚马逊和阿里率先不惜代价开启了补贴大战。这些全球巨头的激烈竞争,将对未来十年产生极其重要的影响,同时,这更是新一波的职业快速发展机会。 语音智能当前的核心关键是声学问题和语义理解,随着市
作为语音识别领域的大牛,Daniel Povey 教授此前一直在负责霍普金斯语言语音处理中心的工作。他曾主导开发了语音识别工具库 Kaldi,该工具库支持多种语音识别的模型的训练和预测,很多国内外语音技术公司的研发测试都是从 Kaldi 起步的。
在日常工作、生活中,语音识别技术作为基础服务,越来越多的出现在我们周围,比如智能音箱、会议记录、字幕生成等等。
腾讯云语音识别(Automatic Speech Recognition,ASR) 为开发者提供语音转文字服务的最佳体验。语音识别服务经微信、腾讯视频、王者荣耀等大量内部业务验证,同时也在线上线下大量外部客户业务场景下成功落地,具备识别准确率高、接入便捷、性能稳定等特点。腾讯云语音识别服务开放实时语音识别、一句话识别和录音文件识别三种服务形式,满足不同类型开发者需求。
【新智元导读】微软的语音识别技术又获得了新的突破:9月13日,微软语音与对话研究团队在arxive上发表论文,宣布在 作为行业标准的 Switchboard 基准上,微软的错误率做到了6.3%,比上周 IBM 公布的 6.6 % 有小幅提升。要实现微软 CEO 纳德拉提到的“对话即平台”AI战略,语音识别准确度的提升是不可或缺的。 昨天,微软研究院在让计算机理解语音上又获得了里程碑式的突破。 在作为行业标准的Switchboard 语音识别任务中,微软研究团队将词汇错误率(WER)降到了6.3%,打破了此前
AI 研习社按:本月 18 日,由美中技术与创新协会(Association of Technology and Innovation,ATI)主办的第一届“AI NEXT”大会在西雅图召开。本次会议的主要嘉宾包括:微软首席 AI 科学家邓力,微软院士黄学东,Uber 深度学习负责人 Luming Wang 等。华人之外,还有亚马逊 Alexa 首席科学家 Nikko Strom,微软小娜架构师 Savas Parastatidis 等业内知名专家。 大会主题是“探索 AI 的潜力,把 AI 技术应用于实用
最近有个新闻说一个人毫无绘画能力靠AI作图,获得艺术比赛第一名,没想到现在AI 这么厉害了,今天分享几个AI 黑科技工具,在公众号后台回复 黑科技 获取软件地址。
今日凌晨,Facebook AI研究中心宣布开源语音识别工具包wav2letter!这是一款简单高效的端到端自动语音识别(ASR)系统,wav2letter 实现的是论文 Wav2Letter: an End-to-End ConvNet-based Speech Recognition System 和 Letter-Based Speech Recognition with Gated ConvNets 中提出的架构。 16年11月,Facebook的三位研究者Ronan Collobert, Chri
编者按:邓力博士原为加拿大滑铁卢大学教授,1999 年加入微软,2016 年起担任微软首席人工智能科学家,负责微软深度学习技术中心应用趋向的深度学习研究。 在上周的 AI Frontiers 会议上,邓力博士为参会嘉宾做了口语对话系统的专题演讲。AI 科技评论与会记者将现场演讲记录下来,结合 PPT 为大家整理出这份演讲实录。此次邓老师介绍了口语对话系统的分类,三代演变史,以及三大研究前沿领域,可谓干货满满。NLP 领域的童鞋们不可错过。 邓力: 今天,我想讲一讲口语对话系统(Spoken Dialog
AI科技评论按:本月 18 日,由美中技术与创新协会(Association of Technology and Innovation,ATI)主办的第一届“AI NEXT”大会在西雅图召开。本次会议的主要嘉宾包括:微软首席 AI 科学家邓力,微软院士黄学东,Uber 深度学习负责人 Luming Wang 等。华人之外,还有亚马逊 Alexa 首席科学家 Nikko Strom,微软小娜架构师 Savas Parastatidis 等业内知名专家。 大会主题是“探索 AI 的潜力,把 AI 技术应用于
深度学习是一种新兴的技术,已经在许多领域中得到广泛的应用,如计算机视觉、自然语言处理、语音识别等。在深度学习中,深度学习框架扮演着重要的角色。Pytorch是一种广泛使用的深度学习框架,它在许多方面都有所改进,并且更加易于使用。
报道称,微软正在进行一项高级谈判,以高达160亿美元的价格收购智能语音巨头 Nuance Communications。
随着互联网时代的进步,智能产品逐渐配备了更加多元化的功能应用、更加丰富的内容资源,用户在使用语音相关的功能时,越来越多的需求需要向智能产品用户提供更便捷的操作体验,语音转换成文本,语音识别是人工智能领域极为重要的前沿技术,实现快速、高效、准确的语音识别及控制,实现智能行业内全新的便捷操作模式。
2012 年,在深度学习技术的帮助下,语音识别研究有了极大进展,很多产品开始采用这项技术,如谷歌的语音搜索。这也开启了该领域的变革:之后每一年都会出现进一步提高语音识别质量的新架构,如深度神经网络、循环神经网络、长短期记忆网络、卷积神经网络等等。然而,延迟仍然是重中之重:自动语音助手对请求能够提供快速及时的反应,会让人感觉更有帮助。
模型下载地址:https://huggingface.co/ggerganov/whisper.cpp large-v1模型比较大,但是会更准确一些。我这边就用large系列模型好了,虽然显卡不咋地,但是跑这个还是够用了,根据限制自行选择模型,占用内存越大越准确。
大数据文摘作品 记者:谭婧 如果说PC时代的搜索引擎成就了谷歌,造就了这家当今世界最大的数据公司,那么随着智能产品的普及,谁先用现象级产品掌握了语音的入口,谁就将成为AI时代的赢家。 而在今天,没有哪个入口能比得上月活用户即将达到10亿的微信。 亚马逊Amazon Echo、苹果Apple HomePod、谷歌Google Home “语音转换文字对(微信)用户来讲是很刚需的场景。”微信智聆技术团队告诉大数据文摘记者。确实,相比用“手”和“眼睛”,以及其他以手机和电脑为媒介的操作,“语言”无疑是人类最自
领取专属 10元无门槛券
手把手带您无忧上云