首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

从英特尔支持DE超声机器人开发,看人工智能在医疗影像领域的价值和机遇

【新智元导读】医疗影像智能分析在智能医疗各领域中都属于发展较快的一支。国内外涌现了一批将 AI 技术应用于医疗影像识别和分析的初创公司。然而,在具体的技术落地过程中,这些公司往往会遇到一些特定的难题。在此,我们和大家分享一个在英特尔技术支持下,由浙江大学数理学院和浙江德尚韵兴图像科技有限公司成功开发的智能医疗影像诊断系统的案例。该系统的任务是识别和分析影像中的甲状腺结节以及良恶性。从这一案例中,可以看到,英特尔系统化的计算硬件和所支持的丰富的计算结构和框架,为开发者快速开发提供了有力武器,并且与其生态环境合

07
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    专访 | 融到 3.8 亿的依图,正在人工智能医疗领域做什么?

    机器之心原创 作者:虞喵喵 上周(5 月 15 日),知名人工智能创业公司依图科技对外宣布,已于近日完成 C 轮融资。此轮融资高达 3.8 亿人民币,投资方包括高瓴资本、云锋基金、红杉资本、高榕资本及真格基金,募集到的资金将用于医疗核心技术研发、临床应用等方向。 专注安防、金融的依图为什么会选择踏足医疗?医疗影像鉴定场景有什么特点与难点?除了医疗影像鉴定,依图还在哪些细分方向有所布局? 针对这些问题,机器之心第一时间专访依图医疗总裁倪浩,得到不少有趣的答案。 「智能数字肺」,四万张图片与两秒钟 图像识别是人

    05

    ACOUSLIC-AI2024——腹围超声自动测量

    在资源匮乏的环境中诊断胎儿生长受限具有挑战性。胎儿生长受限 (FGR) 影响高达 10% 的妊娠,是导致围产期发病率和死亡率的关键因素。FGR 与死产密切相关,还可能导致早产,给母亲带来风险。这种情况通常是由于各种母体、胎儿和胎盘因素阻碍胎儿遗传生长潜力所致。产前超声检查中胎儿腹围 (AC) 的测量是监测胎儿生长的一个关键方面。当小于预期时,这些测量值可以指示 FGR,这种情况与大约 60% 的胎儿死亡有关。FGR 诊断依赖于对胎儿腹围 (AC)、预期胎儿体重或两者的重复测量。这些测量必须至少进行两次,两次测量之间至少间隔两周,才能得出可靠的诊断。此外,AC 测量值低于第三个百分位数本身就足以诊断 FGR。然而,由于超声检查设备成本高昂且缺乏训练有素的超声检查人员,对 AC 测量至关重要的生物识别产科超声的常规实践在资源匮乏的环境中受到限制。

    01

    ACOUSLIC-AI2024——腹围超声自动测量验证集结果

    在资源匮乏的环境中诊断胎儿生长受限具有挑战性。胎儿生长受限 (FGR) 影响高达 10% 的妊娠,是导致围产期发病率和死亡率的关键因素。FGR 与死产密切相关,还可能导致早产,给母亲带来风险。这种情况通常是由于各种母体、胎儿和胎盘因素阻碍胎儿遗传生长潜力所致。产前超声检查中胎儿腹围 (AC) 的测量是监测胎儿生长的一个关键方面。当小于预期时,这些测量值可以指示 FGR,这种情况与大约 60% 的胎儿死亡有关。FGR 诊断依赖于对胎儿腹围 (AC)、预期胎儿体重或两者的重复测量。这些测量必须至少进行两次,两次测量之间至少间隔两周,才能得出可靠的诊断。此外,AC 测量值低于第三个百分位数本身就足以诊断 FGR。然而,由于超声检查设备成本高昂且缺乏训练有素的超声检查人员,对 AC 测量至关重要的生物识别产科超声的常规实践在资源匮乏的环境中受到限制。

    01

    图像识别的原理、过程、应用前景,精华篇!

    图像识别技术是信息时代的一门重要的技术,其产生目的是为了让计算机代替人类去处理大量的物理信息。随着计算机技术的发展,人类对图像识别技术的认识越来越深刻。图像识别技术的过程分为信息的获取、预处理、特征抽取和选择、分类器设计和分类决策。简单分析了图像识别技术的引入、其技术原理以及模式识别等,之后介绍了神经网络的图像识别技术和非线性降维的图像识别技术及图像识别技术的应用。从中可以总结出图像处理技术的应用广泛,人类的生活将无法离开图像识别技术,研究图像识别技术具有重大意义。 1、图像识别技术的引入 图像识别是人

    010

    深度学习在医疗诊断领域优势明显,数据质量将成AI未来发展瓶颈

    人工智能正在改变医疗诊断行业 今年年初,谷歌成功研发出一套用于乳腺癌诊断的人工智能系统。这套系统分析了大量的病理组织显微图像,速度比人类快得多,且肿瘤检出率高达92.4%。如果是人类医生完成这项工作,必须非常仔细分析大量组织样本才能确诊癌症,而且这是一个极度费时且易出错的过程。一个有经验的医生需要几年甚至十年的时间来培训。如今谷歌的成功预示着人工智能疾病诊断的到来。 事实上,利用人工智能检测癌症并不是新鲜事。早在30年前,人工智能的重要分支之一,机器学习技术如人工神经网络算法和决策树算法,就被用来做癌症

    08
    领券