学习任何一门知识的时候,我们需要分析清楚这门知识的核心是什么,从而在这个核心中我们可以得到什么。如果我们是盲目的吸收知识,其实很多知识我们都是在目前场景、工作、生活中无法使用的。也是因为学习之后无法运用,所以我们很快就会遗忘,或者是在学习的过程中很容易就会放弃。
上篇算法(1) 一、函数的渐近增长 函数的渐近增长:给定两个函数f(n)和g(n),如果存在一个整数N, 使得对于所有的 n > N, f(n)总是比g(n)大,那么,我们说f(n)的增长渐近快于
现在有一个算法是这样的,给定一个数组,将数组中每个元素都乘以2返回,我实现了下面两种形式:
数据结构算法入门系列的第二篇,这次介绍下数组, 数组是一个最基础而且常见的数据结构,几乎每种编程语言都有。
上一节,我们从最坏、平均、最好三种情况分析了算法的复杂度,得出结论,通常来说,使用最坏情况来评估算法的复杂度完全够用了。
的排序算法,归并排序和快速排序。这两种排序算法适合大规模的数据排序,比上一节讲的那三种排序算法要更常用。
东哥带你搞定算法~ 作者:labuladong 公众号:labuladong 若已授权白名单也必须保留以上来源信息
设计算法时,时间复杂度要比空间复杂度更容易出问题,所以一般情况一下我们只对时间复杂度进行研究。一般面试或者工作的时候没有特别说明的话,复杂度就是指时间复杂度。
时间复杂度 : 描述一个算法执行的大概效率 ; 面试重点考察 ; 面试时对时间复杂度都有指定的要求 , 蛮力算法一般都会挂掉 ;
那么该如何估计程序运行时间呢,通常会估算算法的操作单元数量来代表程序消耗的时间,这里默认CPU的每个单元运行消耗的时间都是相同的。
兜兜转转了这么久,数据结构与算法始终是逃不过命题。曾几何时,前端学习数据结构与算法,想必会被认为不务正业,但现今想必大家已有耳闻与经历,面试遇到链表、树、爬楼梯、三数之和等题目已经屡见不鲜。想进靠谱大厂算法与数据结构应该不止是提上日程那么简单,可能现在已经是迫在眉睫。这次决定再写一个系列也只是作为我这段时间的学习报告,也不绝对不会再像我之前的vue原理解析那般断更了,欢迎大家监督~
我们可以遍历每个数 ,假设它是某个连续序列的开头,那么首先要满足 不在数组中,然后从 开始逐渐增大,看最大多少还在数组里。
算法(Algorithm)是计算机处理信息的本质,因为计算机程序本质上是一个算法来告诉计算机确切的步骤来执行一个指定的任务。一般地,当算法在处理信息时,会从输入设备或数据的存储地址读取数据,把结果写入输出设备或某个存储地址供以后再调用。
上一篇博客 聊一聊 Android 中巧妙的位操作 中,我们讲解了 java 中常用的位运算及常用应用场景,今天,让我们一起来看一下,面试中常见的位操作的算法题。
「冒泡排序(bubble sort)过程包含多次冒泡操作,每一次冒泡操作都会遍历整个数组,依次比较相邻元素,不符合大小关系则互换位置,直到无元素需要交换。」
其实,以前我们都会说,学习数据结构有多么多么的重要,长篇大论。这次,我们java程序员来看看数据结构和算法重要性。
看一下,这个运算,每次 count 乘以 2 之后, 就距离n更近了一分。 也就是说:
我们已经了解了什么是算法,那当我们写出一个算法的时候,如何去衡量这个算法的好坏呢?
画外音:集合g1中包含u1,集合g2中包含u1,合并后的微信群g3也只包含一个u1。
中文题面:给定一个整数 n ,返回可表示为两个 n 位整数乘积的 最大回文整数 。因为答案可能非常大,所以返回它对 1337 取余 。
比如说输入K = 1,算法返回 5,因为5!,6!,7!,8!,9!这 5 个阶乘的结果最后只有一个 0,即有 5 个n满足条件。
所以,需要一种方法,可以不受环境或数据规模的影响,粗略地估计算法的执行效率。这种方法就是复杂度分析。
我以前的文章主要都是讲解算法的原理和解题的思维,对时间复杂度和空间复杂度的分析经常一笔带过,主要是基于以下两个原因:
我们前面讲过,递归的思想就是,将大问题分解为小问题来求解,然后再将小问题分解为小小问题。这样一层一层地分解,直到问题的数据规模被分解得足够小,不用继续递归分解为止。
HashMap是由数组和链表组合构成的数据结构。大概如下,数组里面每个地方都存了key- value这样的实例,在Java7叫Entry,在Java8中叫Node。
一分钟说清楚并查集
给定一个整数数组 nums 和一个整数目标值 target,请你 在该数组中找出和为目标值 target 的那个整数,并返回它们的数组下标。
算法对于敲代码的应该都听过,不管是复杂的还是简单的,衡量算法效率的两个重要指标就是时间复杂度和空间复杂度。
当人们提到“递归”一词,不知道如何理解它,也有人会问递归和迭代有什么区别?首先可以从定义上入手来分析,递归是自身调用自身的函数进行循环、遇到满足终止条件的情况时逐层返回来结束。迭代则是函数内某段代码实现循环,循环代码中参与运算的变量同时是保存结果的变量,当前保存的结果作为下一次循环计算的初始值。
当人们提到“算法”一词,往往就会把它们当成专属于“人工智能”的范畴,很多专业的计算机人士也是,提起算法就头疼,不知道如何学习算法,慢慢的对算法就会失去兴趣,算法不仅仅是计算机行业特有的,在我们的生活中也处处存在着算法,算法是专注于解决问题的过程和方法。
在进行算法分析时,语句总的执行次数T(n)是关于问题规模n的函数,进而分析T(n)随n的变化情况并确定T(n)的数量级。算法的时间复杂度,也就是算法的时间量度,记作:T(n)= O(f(n))。它表示随问题规模n的增大,算法执行时间的增长率和f(n)的增长率相同,称作算法的渐近时间复杂度,简称为时间复杂度,是一种“渐进表示法”。其中f(n)是问题规模n的某个函数。
排序对于任何一个程序员来说,可能都不会陌生。你学的第一个算法,可能就是排序。大部分编程语言中,也都提供了排序函数。
跳表是一个动态数据结构,可以支持快速地插入、删除、查找操作,写起来也不怎么复杂,甚至可以替代红黑树。跳表的空间复杂度是 O(n),时间复杂度是 O(logn)。
上一篇文章我们介绍了字典这个数据结构,这一篇文章我们接着来学习下另外一个数据结构,跳表。那么什么是跳表呢?
前面我们说了算法的重要性数据结构与算法开篇,今天我们就开始学习如何分析、统计算法的执行效率和资源消耗呢?请看本文一一道来。
复杂度是衡量一个算法好坏的标准,可以从 时间 和 空间 两个维度进行比较。可能你之前听说某个算法的时间复杂度是O(N),空间复杂度是O(1),知道这是一个还不错的算法,那么你知道这些复杂度是如何计算出来的吗?本文将会揭开它们神秘的面纱,让你拥有一把衡量算法好坏的度量衡。
链表通过指针将一组零散的内存块串联在一起。其中内存块称为结点,并且还有一个记录下个结点地址的指针,叫做后继指针next。
上一小节我们讲到,比较两个算法的优劣最重要的比较方式就是拿算法的时间复杂度来做比较.这节我们就来系统的学习一下算法的时间复杂度:
1. 并查集解决的是连通块的问题,常见操作有,判断两个元素是否在同一个连通块当中,两个非同一连通块的元素合并到一个连通块当中。 并查集和堆的结构类似,都是采用数组存储下一个节点的下标的方式来抽象成一棵树,只不过堆的数组对应的是一棵二叉树,而并查集的数组对应的是森林,可以抽象成很多的树,并且每棵树也不一定是二叉树,任意形状均可。 初始化数组时,数组存储内容均为自己的下标,表示每个节点的父节点都是自己,previous译为先前的,在这里正好表示某一个元素的父节点元素下标是多少。 合并两个节点,实际上是合并这两个节点分别对应的根节点,这里可能会有人有疑问,为什么不合并非根节点呢?如果你合并非根节点,让非根节点指向另一个非根节点,那么2棵树直接变成三棵树了。并查集合并算法的性能瓶颈其实是在找根的操作上,如果一棵树的高度是N,那么找根的时间复杂度其实就是O(N)了,这样的效率实际上是很低的,所以后面会进行三种方式的优化。 统计并查集中树的个数其实也比较简单,只需要统计根节点是自己的节点个数即可。
81、模块A将学生信息,即学生姓名、学号、手机等放到一个结构体系中,传递给模块B,模块A和B之间的耦合类型为 什么耦合?
跳表这种数据结构对你来说,可能会比较陌生,因为一般的数据结构和算法书籍里都不怎么会讲。但是它确实是一种各方面性能都比较优秀的动态数据结构,可以支持快速地插入、删除、查找操作,写起来也不复杂,甚至可以替代红黑树(Red-black tree)。
我们在 上篇文章 聊了高楼扔鸡蛋问题,讲了一种效率不是很高,但是较为容易理解的动态规划解法。后台很多读者问如何更高效地解决这个问题,今天就谈两种思路,来优化一下这个问题,分别是二分查找优化和重新定义状态转移。
我们在 上篇 聊了高楼扔鸡蛋问题:经典算法题:高楼扔鸡蛋 讲了一种效率不是很高,但是较为容易理解的动态规划解法。后台很多读者问如何更高效地解决这个问题,今天就谈两种思路,来优化一下这个问题,分别是二分查找优化和重新定义状态转移。
这个算法的运行次数函数是f (n) =3。 根据我们推导大0阶的方法,第一步就是把常数项3 改为1。在保留最高阶项时发现,它根本没有最高阶项,所以这个算法的时间复杂度为0(1)。
我们该如何估计程序运行时间呢,我们通常会估计算法的操作单元数量,来代表程序消耗的时间, 这里我们默认CPU的每个单元运行消耗的时间都是相同的。
题目描述: Given an array of integers where 1 ≤ a[i] ≤ n (n = size of array), some elements appear twice
曾几何时学好数据结构与算法是我们从事计算机相关工作的基本前提,然而现在很多程序员从事的工作都是在用高级程序设计语言(如Java)开发业务代码,久而久之,对于数据结构和算法就变得有些陌生了,由于长年累月的码砖的缘故,导致我们都快没有这方面的意识了,虽然这种论断对于一些平时特别注重学习和思考的人来说不太适用,但的确是有这样的一个现象。
在计算机程序编写前,依据统计方法对算法进行估算,经过总结,我们发现一个高级语言编写的程序程序在计算机上运行所消耗的时间取决于下列因素:
有句话很有趣:Stay hungry, stay foolish. 个人根据对这句话的理解 以一个有强烈求知欲的小白的角度,用提问解答的方式组织全文,以此发现自己知识图谱的不足并积极学习新的知识。
领取专属 10元无门槛券
手把手带您无忧上云