首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

程序算法指导逗比做人生选择

等等,等等…… 我个人觉得,如果是非计算机科班出生的人不会做选择,不知道怎么走也罢了,但是我们计算机科班出生的人是学过算法的,懂算法的人应该是知道怎么做选择的。...所以,在选择中纠结的人有必要参考一下排序算法。 首先,你最需要参考的就是“冒泡排序”——这种算法的思路就是每次冒泡出一个最大的数。...这个算法告诉我们,我们的选择标准越清晰,我们就越容易做出选择。 这是排序算法中最经典的两个算法了,面试必考。相信你已烂熟于心中了。所以,我觉得你把这个算法应用于你的人生选择也应该不是什么问题。...贪婪算法 所谓贪婪算法,是一种在每一步选择中都采取在当前状态下最好或最优(即最有利)的选择(注意:是当前状态下),从而希望导致结果是最好或最优的算法。贪婪算法最经典的一个例子就是哈夫曼编码。...对于选择中,大多数人都会选用贪婪算法,因为这是一个比较简单的算法,未来太复杂了,只能走一步看一步,在当前的状况下做出最利于自己的判断和选择即可。

68080
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    算法-排序算法-选择排序

    /** * 排序算法-选择排序 * 选择排序(Selection Sort)算法也是比较简单的排序算法,其思路比较直观。选择排序算法在每一步中选取最小值来重新排列,从而达到排序的目的。...* 选择排序算法通过选择和交换来实现排序,其排序流程如下: * (1)首先从原始数组中选择最小的1个数据,将其和位于第1个位置的数据交换。...* (2)接着从剩下的n-1个数据中选择次小的1个数据,将其和第2个位置的数据交换。 * (3)然后不断重复上述过程,直到最后两个数据完成交换。至此,便完成了对原始数组的从小到大的排序。...* * 选择排序算法在对n个数据进行排序时,无论原数据有无顺序,都需要进行n-1步的中间排序。 * 这种排序方法思路很简单直观,但是缺点是执行的步骤稍长,效率不高。

    1.5K30

    排序算法---选择排序

    排序是我们学习算法过程中重要且基础的一环,例如对下面的排序问题,我们应该怎么做呢?...这就是选择排序(selection sort)的算法思想。 上图就是选择排序算法思想,但一个算法的实现往往不能通过一个简单的思想就搞定(这就是思想与现实的距离,哈哈~)。...选择算法的实现并不会新建一个空白列表(因为这样太奢侈了),而是直接在原列表上进行操作:首先先从列表中找出最大(或者最小)的元素,将其与列表中的第一个元素互换位置,然后再从剩余元素中挑选出最大(或者最小)...具体的实施步骤如下: 算法实现 接下来我们看一下其具体的算法实现: #include #include using namespace std; struct...student : students) { cout.width(8); // 设置数据宽度 cout << student; } return 0; } 程序运行结果

    68510

    排序算法-选择排序

    算法简介 选择排序就是找到数组中最小元素将其和数组第一个元素交换位置,然后在剩下的元素中找到最小元素并将其与数组第二个元素进行交换,以此类推,直至整个数组排序结束。...算法描述 找到数组中最小元素并将其和数组第一个元素交换位置 在剩下的元素中找到最小元素并将其与数组第二个元素交换,直至整个数组排序 ?...代码实现 /** * 选择 * * @param array */ private static void selectionSort(int[]...由于每次都是选取未排序序列R中的最小元素 a 与 R 中的第一个元素交换,很可能破坏了元素间的相对位置,因此选择排序是不稳定的。...排序算法 平均时间复杂度 最好情况 最坏情况 空间复杂度 稳定性 选择排序 \(O(n^2)\) \(O(n^2)\) \(O(n^2)\) \(O(1)\) 不稳定

    1.6K40

    如何选择限流算法

    不同的限流算法有其相应的优缺点。下面文章会详细描述它们各自的优缺点及适用场景。 漏斗算法 漏斗算法类似一个先进先出队列。如下图所示,每个请求类似水滴加入到一个漏斗桶中。...固定窗口算法 image.png 固定窗口算法可以部分解决流量突增的问题。它不像漏斗算法一样,按恒定的速率去处理请求,而是只要在固定的时间周期内不超过限额即可。这样可以应对流量突增的问题。...滑动窗口算法 image.png 滑动窗口算法与固定窗口算法的不同点在于,滑动窗口的周期起止时间是浮动的。...总结 如果你的系统没有突增流量,对于流量绝对均匀有很强的要求,使用漏斗算法。 如果你的系统有少量突增流量,同时你希望限流算法简单易实现,可以使用滑动时间窗口算法。...如果你的系统经常有突增流量,为了系统整体稳定性,应使用令牌桶算法

    2K30

    特征选择常用算法

    简单说就是,每次都选择一个使得评价函数的取值达到最优的特征加入,其实就是一种简单的贪心算法。   算法评价:缺点是只能加入特征而不能去除特征。...算法评价:序列后向选择与序列前向选择正好相反,它的缺点是特征只能去除不能加入。   另外,SFS与SBS都属于贪心算法,容易陷入局部最优值。   ...( L < R )   算法评价:增L去R选择算法结合了序列前向选择与序列后向选择思想, L与R的选择算法的关键。   ...(5) 序列浮动选择( Sequential Floating Selection )   算法描述:序列浮动选择由增L去R选择算法发展而来,该算法与增L去R选择算法的不同之处在于:序列浮动选择的L与R...算法评价:序列浮动选择结合了序列前向选择、序列后向选择、增L去R选择的特点,并弥补了它们的缺点。

    2.6K90

    浅析选择排序算法

    选择排序(Selection Sort) 一、算法描述 在一个长度为 N 的无序数组中,第一次遍历 n 个数找到最大的和最后一个数交换。...最后排序为 [1 2 3 4 7 9] 二、算法实现 #include int findMaxPos(int arr[], int n){ int max = arr[0];...4,9,3,1,7,2}; selectionSort(arr,6); for(int i=0; i<6; i++){ printf("%d\n",arr[i]); } } 输出 三、算法分析...平均时间复杂度:O(n2) 空间复杂度:O(1) 稳定性:不稳定(例如序列9 8 5 2 5,我们知道第一遍选择第1个元素9会和5交换,那么原序列中2个5的相对前后顺序就被破坏了,所以选择排序不是一个稳定的排序算法...) 四、适用场景 选择排序适用于数据量很小的排序场景,因为选择的实现方式较为简单。

    77610

    Python算法——选择排序

    选择排序(Selection Sort)是一种简单的排序算法,它的基本思想是在未排序的部分中选择最小(或最大)的元素,然后将其放在已排序部分的末尾。...选择排序不同于冒泡排序,它不需要反复交换元素,因此在某些情况下可能比冒泡排序更快。本文将详细介绍选择排序的工作原理和Python实现。...选择排序的核心思想是每一轮选择一个最小的元素,并将它交换到已排序部分的末尾。这一过程持续多轮,每轮选择一个最小的元素,直到整个数组有序。 下面是一个示例,演示选择排序的过程。...与冒泡排序一样,选择排序不是最高效的排序算法,但它是一种简单易懂的算法,适用于小型数据集。 总之,选择排序是一种简单的排序算法,通过选择最小元素并将其放在已排序部分的末尾,实现了排序数组的目标。...了解选择排序有助于理解排序算法的基本原理,并为学习更高效的排序算法奠定了基础。

    21910

    机器学习算法选择

    对于你的分类问题,你知道应该如何选择哪一个机器学习算法么?...当然,如果你真的在乎精度(accuracy),最好的方法就是通过交叉验证(cross-validation)对各个算法一个个地进行测试,进行比较,然后调整参数确保每个算法达到最优解,最后选择最好的一个。...优点: 实现简单,计算简单; 缺点: 不能拟合非线性数据. ---- 4.最近领算法——KNN KNN即最近邻算法,其主要过程为: 1....另外噪声和非相关性特征向量的存在会使K近邻算法的准确性减小。 近邻算法具有较强的一致性结果。随着数据趋于无限,算法保证错误率不会超过贝叶斯算法错误率的两倍。...优点 能够处理大型特征空间 能够处理非线性特征的相互作用 无需依赖整个数据 缺点 当观测样本很多时,效率并不是很高 有时候很难找到一个合适的核函数 算法选择参考 首当其冲应该选择的就是逻辑回归,如果它的效果不怎么样

    60630

    特征选择算法实战

    聚类算法有很多种,在需要时可以根据所涉及的数据类型、聚类的目的以及具的应用要求来选择合适的聚类算法。下面介绍 K-means聚类算法: K-means算法是一种常用的基于划分的聚类算法。...其次,这种算法要求事先给出要生成的簇的数目k,显然这对用户提出了过高的要求,并且由于算法的初始聚类中心是随机选择的,而不同的初始中心对聚类结果有很大的影响。...3.2 数据预处理与程序 本文在转换数据后,首先进行了预处理,由于本文的数据范围都是1-10,因此不需要归一化,但是数据样本中存在一些不完整,会影响实际的程序运行,经过程序处理,将这一部分数据删除。...根据第三章提到的ReliefF算法过程,先编写ReliefF函数程序,用来计算特征属性,再编写主程序,在主程序中调用该函数进行计算,并对结果进行分析,绘图,得到有用的结论。 程序统一在最后贴出。...由于算法在运行过程中,会选择随机样本R,随机数的不同将导致结果权重有一定的出入,因此本文采取平均的方法,将主程序运行20次,然后将结果汇总求出每种权重的平均值。

    1.5K40
    领券